问题标签 [edge-detection]
For questions regarding programming in ECMAScript (JavaScript/JS) and its various dialects/implementations (excluding ActionScript). Note JavaScript is NOT the same as Java! Please include all relevant tags on your question; e.g., [node.js], [jquery], [json], [reactjs], [angular], [ember.js], [vue.js], [typescript], [svelte], etc.
opencv - 对角线的Opencv Sobel边缘检测(右上45度,左上135度)
我遇到了opencv 的 Sobel 边缘检测器的问题。从它的文档来看,它似乎只适用于水平和垂直方向的边缘(通过指定 0,1 或 1,0)。有没有人知道如何使用 cvSobel(不是 Canny 方法)获得 45 度和 135 度的对角线边缘。Matlab 有一个带有 edge(I,'sobel' ...) 选项的灵魂,但我的代码都是 c++ 中的,我想保留它。
感谢您的建议和解决方案。
opengl - 使用帧缓冲区对象 (FBO) 或?
情况:生成具有不同变换和旋转的形状和相应边缘的 N 个样本(使用 Sobel 滤波器或我自己的),而视口(大小 = 600*600)和相机保持不变。即将有 N 个样本 + N 个对应的边。
我想这样做,
使用一个带有 2 个渲染缓冲区的 FBO [即每个缓冲区的大小将为 = (N *600) * 600]- N 个形状的第一个和相应形状的边缘的第二个
问题:
- 实现上述目标的最佳方法是什么?
- 虽然视口大小为 600*600 像素,但形状仅占 50*50 像素左右。那么是否有任何有效的方法可以仅在第二个缓冲区上对边界框/AABB 区域应用边缘检测?也只能以有效的方式读取 2N 个边界框(N 个样本 + N 个对应边)?
python - openCV:Sobel 边缘检测给了我断言错误
我正在使用 python-openCV。使用 Sobel 边缘检测时,出现以下断言错误:
我创建了dest
using CreateImage()
,它的大小和通道与src
. src 和 dest 的深度也是 IPL_DEPTH_8U。我还尝试使用加载图像,LoadImageM()
以便常量是一种类型CV_*
,但这没有帮助。
我也碰巧发现IPL_DEPTH_8U == CV_8U
是false
。
python - openCV vs GIMP,openCV中的边缘检测失败
我正在使用以下参数在 openCV 中进行 Sobel 边缘检测:
我还使用 GIMP 对图像进行了 Sobel 边缘检测。
源图像是: openCV 的输出是 GIMP 的输出是
为什么 openCV 和 GIMP 的输出之间存在如此大的差异。GIMP 的输出质量超过 openCV 光年。
opencv - 边缘检测iphone opencv
我的应用是检测硬币。我已经使用 OpenCv 完成了大部分工作。我正在使用 CannyDetection 和 houghTransform 来检测图像圆圈。
但是我没有得到正确的硬币圈,我认为 ThresoldValues 传递给 cannyEdgeDetector 可能有问题。谁能告诉我如何选择阈值来检测硬币圈。
c - OpenCV cvCanny 内存异常
我正在尝试做 OpenCV 书中的例子,我得到了关于 cvCanny 的部分。我正在尝试使用它,但我不断收到内存异常错误
Unhandled exception at 0x75d8b760 in Image_Transform.exe: Microsoft C++ exception: cv::Exception at memory location 0x0011e7a4..
我还查看了与此问题类似的另一篇文章,但这对我没有帮助,因为我每次都遇到相同的错误。非常感谢任何帮助,该函数的源代码位于下方。
matlab - Which edge detector
I need to detect the edges of an object (like a hand) which I know it is located in the center of the photo.
My most concern is the reliability of the result, (because I want to use it for commercial purposes), currently I am working with Canny detector, but I wanted to check if maybe there is better more reliable and faster method?
Any tip is much appreciated.
opencv - EmguCV 仅切割面部+颈部皮肤并保存新图像
在我的应用程序中,我将输入一个人类图像,并且我想只将该人的面部和颈部作为单独图像的输出。
示例:下面的图像作为输入:(来源:http ://www.fremantlepress.com.au )
我想获得向上的图像作为输出:
我想执行以下算法:
1. 检测面部
2. 选择(面部区域 * 2)区域
3. 检测皮肤和颈部
4. 剪切所选图像的皮肤区域
5. 将该剪切区域保存到新图像中
在浏览 EmguCV wiki 和其他在线资源时,我有信心执行第 1 步和第 2 步。但我不确定如何完成第 3 步和第 4 步
。我正在寻找一些功能/方法(Cunny Edge Detection ,轮廓等),但我不确定我应该如何以及在哪里应用这些方法。我正在使用 EmguCV (C#) 和 Windows 窗体应用程序。
请帮助我如何执行第 3 步和第 4 步。如果有人详细说明这两个步骤和一些代码,我会很高兴。
javascript - 边缘检测和去除
我是图像处理的新手。我正在开发一个网络应用程序。我需要拍摄一张图片(手绘图)并删除其中的一部分。例如,拍摄猫的图像并移除除眼睛之外的所有内容。
PS-> 我正在开发一个基于图形游戏的身份验证系统。它要求用户选择一个与他的密码相关的图像,我会通过检测边缘并删除它的部分来变形它并将其存储为提示并显示给他,这样它只对他有意义而不是对他有意义一个攻击者。
image-processing - Algorithm to detect corners of paper sheet in photo
What is the best way to detect the corners of an invoice/receipt/sheet-of-paper in a photo? This is to be used for subsequent perspective correction, before OCR.
My current approach has been:
RGB > Gray > Canny Edge Detection with thresholding > Dilate(1) > Remove small objects(6) > clear boarder objects > pick larges blog based on Convex Area. > [corner detection - Not implemented]
I can't help but think there must be a more robust 'intelligent'/statistical approach to handle this type of segmentation. I don't have a lot of training examples, but I could probably get 100 images together.
Broader context:
I'm using matlab to prototype, and planning to implement the system in OpenCV and Tesserect-OCR. This is the first of a number of image processing problems I need to solve for this specific application. So I'm looking to roll my own solution and re-familiarize myself with image processing algorithms.
Here are some sample image that I'd like the algorithm to handle: If you'd like to take up the challenge the large images are at http://madteckhead.com/tmp
(source: madteckhead.com)
(source: madteckhead.com)
(source: madteckhead.com)
(source: madteckhead.com)
In the best case this gives:
(source: madteckhead.com)
(source: madteckhead.com)
(source: madteckhead.com)
However it fails easily on other cases:
(source: madteckhead.com)
(source: madteckhead.com)
(source: madteckhead.com)
Thanks in advance for all the great ideas! I love SO!
EDIT: Hough Transform Progress
Q: What algorithm would cluster the hough lines to find corners? Following advice from answers I was able to use the Hough Transform, pick lines, and filter them. My current approach is rather crude. I've made the assumption the invoice will always be less than 15deg out of alignment with the image. I end up with reasonable results for lines if this is the case (see below). But am not entirely sure of a suitable algorithm to cluster the lines (or vote) to extrapolate for the corners. The Hough lines are not continuous. And in the noisy images, there can be parallel lines so some form or distance from line origin metrics are required. Any ideas?
(source: madteckhead.com)