点到直线上的投影如下:
从 x = a + t * n 形式的线和点 p 开始。
表示直线上离点 p 最近的点的向量分量是:
(a - p) - ((a - p) 点 n)n
所以我们有: p + (a - p) - ((a - p) dot n)n
经过一些简化,我们有: a - ((a - p) dot n)n
注意 ((a - p) dot n) n 是向量分量,表示沿直线从最近点到起点的位置(即从最近点到p回到a)
让我们使用PVector
s 让生活更轻松。
PVector p = new PVector(200, 200);
PVector a = new PVector(50, 50);
PVector b = new PVector(350, 50);
PVector n = new PVector(350, 50); // |p2 - p1|
void setup() {
size(400, 400);
strokeWeight(2);
strokeWeight(1);
// initialize our normalized (unit length) line direction
n.sub(a);
n.normalize();
}
void draw() {
drawCircle();
}
PVector getNearestPointOnLine(PVector p, PVector a, PVector n){
// the notation turns the computation inside out,
// but this is equivalent to the above equation
PVector q = PVector.mult(n, -PVector.sub(a, p).dot(n));
q.add(a);
return q;
}
void drawCircle() {
// lets draw everything here where we can see it
background(255, 255, 255);
line(a.x, a.y, b.x, b.y);
fill(50, 120, 120);
//circle
// NOTE: this may require hooking up a mouse move event handler
p.x = mouseX;
p.y = mouseY;
PVector q = getNearestPointOnLine(p, a, n);
ellipse(q.x, q.y, 75, 75);
//circle center
ellipse(q.x, q.y, 7, 7);
fill(0); // make text visible on white background
text("Q", q.x + 15, q.y + 5);
//fill(50, 120, 120);
}
参考:https ://en.wikipedia.org/wiki/Distance_from_a_point_to_a_line#Vector_formulation