0

我想使用两个分类因素(conditionStimuli = 3 个级别;sequenceTrials = 2 个级别)创建一个关于反应时间的贝叶斯层次模型。最初,我使用默认先验运行模型:

maximal_RTs.bmodel = brm(RTs  ~  conditionStimuli * sequenceTrials + (conditionStimuli * sequenceTrials | Num_part)
                         , data = data_RTs_go
                         , warmup = 500
                         , iter = 3000
                         , chains = 2
                         , inits = "random"
                         , cores = 2
                         
)

summary() 函数报告这些:我是否应该通过查看 1-95%/u-95% 值来删除与 0 相同的交互?

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
sd(Intercept)                                                                             77.13      9.37    61.46    98.27 1.00      852
sd(conditionStimulishapes)                                                                43.58      5.82    33.83    56.31 1.00     1220
sd(conditionStimulileaves)                                                                50.70      6.34    39.76    64.69 1.00     1034
sd(sequenceTrialsNGG)                                                                     24.97      4.51    16.77    34.49 1.00     1945
sd(conditionStimulishapes:sequenceTrialsNGG)                                              13.75      6.63     1.39    26.87 1.00     1397
sd(conditionStimulileaves:sequenceTrialsNGG)                                              15.35      7.69     1.42    30.65 1.00      782
cor(Intercept,conditionStimulishapes)                                                     -0.22      0.15    -0.50     0.09 1.00     1034
cor(Intercept,conditionStimulileaves)                                                     -0.23      0.15    -0.52     0.08 1.00     1084
cor(conditionStimulishapes,conditionStimulileaves)                                         0.31      0.15    -0.01     0.59 1.00      895
cor(Intercept,sequenceTrialsNGG)                                                          -0.19      0.18    -0.52     0.18 1.00     2101
cor(conditionStimulishapes,sequenceTrialsNGG)                                              0.02      0.19    -0.36     0.38 1.00     1955
cor(conditionStimulileaves,sequenceTrialsNGG)                                             -0.00      0.19    -0.37     0.36 1.00     2042
cor(Intercept,conditionStimulishapes:sequenceTrialsNGG)                                   -0.38      0.29    -0.83     0.28 1.00     3516
cor(conditionStimulishapes,conditionStimulishapes:sequenceTrialsNGG)                      -0.16      0.29    -0.68     0.45 1.00     4298
cor(conditionStimulileaves,conditionStimulishapes:sequenceTrialsNGG)                       0.29      0.29    -0.35     0.76 1.00     3323
cor(sequenceTrialsNGG,conditionStimulishapes:sequenceTrialsNGG)                            0.15      0.31    -0.47     0.72 1.00     3609
cor(Intercept,conditionStimulileaves:sequenceTrialsNGG)                                    0.24      0.28    -0.38     0.72 1.00     3656
cor(conditionStimulishapes,conditionStimulileaves:sequenceTrialsNGG)                       0.03      0.29    -0.55     0.57 1.00     3728
cor(conditionStimulileaves,conditionStimulileaves:sequenceTrialsNGG)                      -0.41      0.27    -0.82     0.25 1.00     3180
cor(sequenceTrialsNGG,conditionStimulileaves:sequenceTrialsNGG)                           -0.10      0.31    -0.63     0.54 1.00     2882
cor(conditionStimulishapes:sequenceTrialsNGG,conditionStimulileaves:sequenceTrialsNGG)    -0.14      0.35    -0.76     0.58 1.00     1750

还有这些问题:

是否有可能(或有意义)在结果变量上设置先验(反应时间:前高斯)?

在预测变量上,什么类型的先验是合适的?

谢谢,

数据如下所示:

Num_part trial_type  Go_type conditionStimuli ITI_ms response RTs correctResponse order_pres sequenceTrials sdt
2        1         Go     Bent           leaves    819        1 301               1          1            NGG   1
3        1         Go     Bent           leaves    771        1 237               1          1             GG   1
4        1         Go     Bent           leaves   1086        1 393               1          1             GG   1
5        1         Go Straight           leaves    652        1 331               1          1             GG   1
7        1         Go     Bent           leaves    919        1 372               1          1            NGG   1
9        1         Go Straight           leaves    802        1 359               1          1            NGG   1
4

0 回答 0