背景
我正在使用经过微调的Mbart50模型,我需要加快推理速度,因为在我当前的硬件中按原样使用 HuggingFace 模型相当慢。我想使用TorchScript,因为我无法让onnx导出这个特定的模型,因为它似乎会在以后得到支持(否则我会很高兴错了)。
将 Transformer 转换为 Pytorch 跟踪:
import torch
""" Model data """
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-one-to-many-mmt", torchscript= True)
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-one-to-many-mmt")
tokenizer.src_lang = 'en_XX'
dummy = "To celebrate World Oceans Day, we're swimming through a shoal of jack fish just off the coast of Baja, California, in Cabo Pulmo National Park. This Mexican marine park in the Sea of Cortez is home to the northernmost and oldest coral reef on the west coast of North America, estimated to be about 20,000 years old. Jacks are clearly plentiful here, but divers and snorkelers in Cabo Pulmo can also come across many other species of fish and marine mammals, including several varieties of sharks, whales, dolphins, tortoises, and manta rays."
model.config.forced_bos_token_id=250006
myTokenBatch = tokenizer(dummy, max_length=192, padding='max_length', truncation = True, return_tensors="pt")
torch.jit.save(torch.jit.trace(model, [myTokenBatch.input_ids,myTokenBatch.attention_mask]), "././traced-model/mbart-many.pt")
推理步骤:
import torch
""" Model data """
from transformers import MBart50TokenizerFast
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-one-to-many-mmt")
model = torch.jit.load('././traced-model/mbart-many.pt')
MAX_LENGTH = 192
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-one-to-many-mmt")
model.to(device)
model.eval()
tokenizer.src_lang = 'en_XX'
dummy = "To celebrate World Oceans Day, we're swimming through a shoal of jack fish just off the coast of Baja, California, in Cabo Pulmo National Park. This Mexican marine park in the Sea of Cortez is home to the northernmost and oldest coral reef on the west coast of North America, estimated to be about 20,000 years old. Jacks are clearly plentiful here, but divers and snorkelers in Cabo Pulmo can also come across many other species of fish and marine mammals, including several varieties of sharks, whales, dolphins, tortoises, and manta rays."
myTokenBatch = tokenizer(dummy, max_length=192, padding='max_length', truncation = True, return_tensors="pt")
encode, pool , norm = model(myTokenBatch.input_ids,myTokenBatch.attention_mask)
预期的编码输出:
这些是可以使用 MBart50TokenizerFast 解码为单词的标记。
tensor([[250004, 717, 176016, 6661, 55609, 7, 10013, 4, 642,
25, 107, 192298, 8305, 10, 15756, 289, 111, 121477,
67155, 1660, 5773, 70, 184085, 111, 118191, 4, 39897,
4, 23, 143740, 21694, 432, 9907, 5227, 5, 3293,
181815, 122084, 9201, 23, 70, 27414, 111, 48892, 169,
83, 5368, 47, 70, 144477, 9022, 840, 18, 136,
10332, 525, 184518, 456, 4240, 98, 70, 65272, 184085,
111, 23924, 21629, 4, 25902, 3674, 47, 186, 1672,
6, 91578, 5369, 10332, 5, 21763, 7, 621, 123019,
32328, 118, 7844, 3688, 4, 1284, 41767, 136, 120379,
2590, 1314, 23, 143740, 21694, 432, 831, 2843, 1380,
36880, 5941, 3789, 114149, 111, 67155, 136, 122084, 21968,
8080, 4, 26719, 40368, 285, 68794, 111, 54524, 1224,
4, 148, 50742, 7, 4, 13111, 19379, 1779, 4,
43807, 125216, 7, 4, 136, 332, 102, 62656, 7,
5, 2, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1]])
实际输出:
我不知道这是什么...print(encode)
(tensor([[[[-9.3383e-02, -2.0395e-01, 4.8226e-03, ..., 1.8068e+00,
1.1528e-01, 7.0406e-02],
[-4.4630e-02, -2.2453e-01, 9.5264e-02, ..., 1.6921e+00,
1.4607e-01, 4.8238e-02],
[-7.8206e-01, 1.2699e-01, 1.6467e+00, ..., -1.7057e+00,
8.7768e-01, 8.2230e-01],
...,
[-1.2145e-02, -2.1855e-03, -6.0966e-03, ..., 2.9296e-02,
2.2141e-03, 3.2074e-02],
[-1.4671e-02, -2.8995e-03, -5.8610e-03, ..., 2.8525e-02,
2.4620e-03, 3.1593e-02],
[-1.5877e-02, -3.5165e-03, -4.8743e-03, ..., 2.8930e-02,
2.9877e-03, 3.3892e-02]]]], grad_fn=<CopyBackwards>))