我正在使用 vgg16 进行图像分类。我想使用以下代码测试我的转移模型:
classes = ['A', 'B', 'C']
len(classes) #3
len(test_data)#171
batch_size=10
# Testing
test_loss = 0.0
class_correct = list(0. for i in range(len(classes)))
class_total = list(0. for i in range(len(classes)))
vgg16.eval()
for data, target in test_loader:
output = vgg16(data)
loss = criterion(output, target)
test_loss += loss.item()*data.size(0)
_, pred = torch.max(output, 1)
correct_tensor = pred.eq(target.data.view_as(pred))
correct = np.squeeze(correct_tensor.numpy())
for i in range(batch_size):
label = target.data[i]
class_correct[label] += correct[i].item()
class_total[label] += 1
test_loss = test_loss/len(test_loader.dataset)
print('Test Loss: {:.6f}\n'.format(test_loss))
for i in range(len(classes)):
if class_total[i] > 0:
print('Test Accuracy of %5s: %2d%% (%2d/%2d)' % (
classes[i], 100 * class_correct[i] / class_total[i],
np.sum(class_correct[i]), np.sum(class_total[i])))
else:
print('Test Accuracy of %5s: N/A (no training examples)' % (classes[i]))
print('\nTest Accuracy (Overall): %2d%% (%2d/%2d)' % (
100. * np.sum(class_correct) / np.sum(class_total),
np.sum(class_correct), np.sum(class_total)))
我收到以下错误:
I receive following error:
15 for i in range(batch_size):
16 label = target.data[i]
---> 17 class_correct[label] += correct[i].item()
18 class_total[label] += 1
19
IndexError: too many indices for array
我不知道为什么会收到此错误以及如何解决它。如果您能帮助我,我将不胜感激。