我希望我的神经网络能够解决像 y=(x*x) + 2x -3 这样的多项式回归问题。
所以现在我创建了一个包含 1 个输入节点、100 个隐藏节点和 1 个输出节点的网络,并给了它很多 epoch 来训练高测试数据大小。问题是在 20000 个 epoch 之后的预测还可以,但比训练后的线性回归预测差得多。
import torch
from torch import Tensor
from torch.nn import Linear, MSELoss, functional as F
from torch.optim import SGD, Adam, RMSprop
from torch.autograd import Variable
import numpy as np
# define our data generation function
def data_generator(data_size=1000):
# f(x) = y = x^2 + 4x - 3
inputs = []
labels = []
# loop data_size times to generate the data
for ix in range(data_size):
# generate a random number between 0 and 1000
x = np.random.randint(1000) / 1000
# calculate the y value using the function x^2 + 4x - 3
y = (x * x) + (4 * x) - 3
# append the values to our input and labels lists
inputs.append([x])
labels.append([y])
return inputs, labels
# define the model
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = Linear(1, 100)
self.fc2 = Linear(100, 1)
def forward(self, x):
x = F.relu(self.fc1(x)
x = self.fc2(x)
return x
model = Net()
# define the loss function
critereon = MSELoss()
# define the optimizer
optimizer = SGD(model.parameters(), lr=0.01)
# define the number of epochs and the data set size
nb_epochs = 20000
data_size = 1000
# create our training loop
for epoch in range(nb_epochs):
X, y = data_generator(data_size)
X = Variable(Tensor(X))
y = Variable(Tensor(y))
epoch_loss = 0;
y_pred = model(X)
loss = critereon(y_pred, y)
epoch_loss = loss.data
optimizer.zero_grad()
loss.backward()
optimizer.step()
print("Epoch: {} Loss: {}".format(epoch, epoch_loss))
# test the model
model.eval()
test_data = data_generator(1)
prediction = model(Variable(Tensor(test_data[0][0])))
print("Prediction: {}".format(prediction.data[0]))
print("Expected: {}".format(test_data[1][0]))
他们是一种获得更好结果的方法吗?我想知道我是否应该尝试获得 3 个输出,分别称为 a、b 和 c,这样 y= a(x*x)+b(x)+c。但我不知道如何实现它并训练我的神经网络。