1

我是 pytorch 的新手,在 AlexNet 中遇到了频道问题。我将它用于“gta san andreas 自驾车”项目,我从具有一个通道的黑白图像中收集数据集并尝试使用脚本训练 AlexNet:

from AlexNetPytorch import*
import torchvision
import torchvision.transforms as transforms
import torch.optim as optim
import torch.utils.data
import numpy as np
import torch
from IPython.core.debugger import set_trace

AlexNet = AlexNet()

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(AlexNet.parameters(), lr=0.001, momentum=0.9)

all_data = np.load('training_data.npy')
inputs= all_data[:,0]
labels= all_data[:,1]
inputs_tensors = torch.stack([torch.Tensor(i) for i in inputs])
labels_tensors = torch.stack([torch.Tensor(i) for i in labels])

data_set = torch.utils.data.TensorDataset(inputs_tensors,labels_tensors)
data_loader = torch.utils.data.DataLoader(data_set, batch_size=3,shuffle=True, num_workers=2)




if __name__ == '__main__':
 for epoch in range(8):
  runing_loss = 0.0
  for i,data in enumerate(data_loader , 0):
     inputs= data[0]
     inputs = torch.FloatTensor(inputs)
     labels= data[1]
     labels = torch.FloatTensor(labels)
     optimizer.zero_grad()
     # set_trace()
     inputs = torch.unsqueeze(inputs, 1)
     outputs = AlexNet(inputs)
     loss = criterion(outputs , labels)
     loss.backward()
     optimizer.step()

     runing_loss +=loss.item()
     if i % 2000 == 1999:    # print every 2000 mini-batches
            print('[%d, %5d] loss: %.3f' %
                  (epoch + 1, i + 1, running_loss / 2000))
            running_loss = 0.0
 print('finished')

我正在使用来自链接的 AlexNet: https ://github.com/pytorch/vision/blob/master/torchvision/models/alexnet.py

但是将第 18 行从:

nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2)

至 :

nn.Conv2d(1, 64, kernel_size=11, stride=4, padding=2)

因为我在训练图像中只使用一个通道,但是我收到了这个错误:

 File "training_script.py", line 44, in <module>
    outputs = AlexNet(inputs)
  File "C:\Users\Mukhtar\Anaconda3\lib\site-packages\torch\nn\modules\module.py", line 477, in __call__
    result = self.forward(*input, **kwargs)
  File "C:\Users\Mukhtar\Documents\AI_projects\gta\AlexNetPytorch.py", line 34, in forward
    x = self.features(x)
  File "C:\Users\Mukhtar\Anaconda3\lib\site-packages\torch\nn\modules\module.py", line 477, in __call__
    result = self.forward(*input, **kwargs)
  File "C:\Users\Mukhtar\Anaconda3\lib\site-packages\torch\nn\modules\container.py", line 91, in forward
    input = module(input)
  File "C:\Users\Mukhtar\Anaconda3\lib\site-packages\torch\nn\modules\module.py", line 477, in __call__
    result = self.forward(*input, **kwargs)
  File "C:\Users\Mukhtar\Anaconda3\lib\site-packages\torch\nn\modules\pooling.py", line 142, in forward
    self.return_indices)
  File "C:\Users\Mukhtar\Anaconda3\lib\site-packages\torch\nn\functional.py", line 396, in max_pool2d
    ret = torch._C._nn.max_pool2d_with_indices(input, kernel_size, stride, padding, dilation, ceil_mode)
RuntimeError: Given input size: (256x1x1). Calculated output size: (256x0x0). Output size is too small at c:\programdata\miniconda3\conda-bld\pytorch-cpu_1532499824793\work\aten\src\thnn\generic/SpatialDilatedMaxPooling.c:67

我不知道出了什么问题,像这样改变通道大小是不是错了,如果错了,请引导我使用一个通道的神经网络,正如我所说我是 pytorch 的新手和我不想自己写nn。

4

2 回答 2

3

您的错误与使用灰度图像而不是 RGB 无关。您的错误与输入的空间维度有关:通过网络“转发”输入图像时,其大小(在特征空间中)变为零 - 这是您看到的错误。您可以使用这个不错的指南来查看每个层的输出大小(conv/pooling)作为内核大小、步幅和填充的函数会发生什么变化。
Alexnet 期望其输入图像为 224 x 224 像素 - 确保您的输入具有相同的大小。

您忽略的其他事项:

  • 您正在使用 Alexnet 架构,但您将其初始化为随机权重,而不是使用预训练的权重(在 imagenet 上训练)。要获得经过训练的 alexnet 副本,您需要像这样实例化网络

    AlexNet = alexnet(pretrained=True)
    
  • 一旦决定使用预训练网络,就不能将其第一层从 3 个输入通道更改为 3 个(训练后的权重根本不适合)。最简单的解决方法是通过简单地重复单个通道 3 次来使您的输入图像“多彩”。有关repeat()更多信息,请参阅。

于 2019-01-02T06:24:24.760 回答
0

问题在于我输入的大小,当我应该给它一个(224x224)时,我给了它一个(32x32)-我是AlexNet的新手,所以我不知道它需要那个大小-。我将图像重塑为 (224x224),现在我正在训练 CNN。

于 2019-01-02T19:09:44.423 回答