我有一个变量df
,5
头(df,15)
junc N1.ir N2.ir W1.ir W2.ir W3.ir
1 pos$chr1:3197398 0.000000 0.000000 0.000000 0.000000 0.000000
2 pos$chr1:3207049 0.000000 0.000000 0.000000 0.000000 0.000000
3 pos$chr1:3411982 0.000000 0.000000 0.000000 0.000000 0.000000
4 pos$chr1:4342162 0.000000 0.000000 0.000000 0.000000 0.000000
5 pos$chr1:4342918 0.000000 0.000000 0.000000 0.000000 0.000000
6 pos$chr1:4767729 -4.369234 -5.123382 -4.738768 -4.643856 -5.034646
7 pos$chr1:4772814 -3.841302 -3.891419 -4.025029 -3.643856 -3.184425
8 pos$chr1:4798063 -5.038919 -4.847997 -5.497187 -4.035624 -7.543032
9 pos$chr1:4798567 -4.735325 -5.096862 -3.882643 -3.227069 -4.983808
10 pos$chr1:4818730 -8.366322 -7.118941 -8.280771 -6.629357 -6.876517
11 pos$chr1:4820396 -5.514573 -6.330917 -5.898853 -4.700440 -5.830075
12 pos$chr1:4822462 -5.580662 -6.914883 -5.562242 -5.380822 -5.703211
13 pos$chr1:4827155 -4.333273 -4.600904 -4.133399 -4.012824 -3.708345
14 pos$chr1:4829569 -4.287866 -3.874469 -3.977280 -4.209453 -4.490326
15 pos$chr1:4857613 -6.902074 -6.074141 -6.116864 -3.989946 -6.474259
使用后的几行melt
> head(ir.m)
junc variable value
1 pos$chr1:3197398 N1.ir 0.000000
2 pos$chr1:3207049 N1.ir 0.000000
3 pos$chr1:3411982 N1.ir 0.000000
4 pos$chr1:4342162 N1.ir 0.000000
5 pos$chr1:4342918 N1.ir 0.000000
6 pos$chr1:4767729 N1.ir -4.369234
并总结
> summary(ir)
junc N1.ir N2.ir W1.ir
neg$chr1:100030088: 1 Min. :-11.962 Min. :-12.141 Min. :-11.817
neg$chr1:100039873: 1 1st Qu.: -4.379 1st Qu.: -4.217 1st Qu.: -4.158
neg$chr1:10023338 : 1 Median : -2.807 Median : -2.663 Median : -2.585
neg$chr1:10024088 : 1 Mean : -2.556 Mean : -2.434 Mean : -2.362
neg$chr1:10025009 : 1 3rd Qu.: 0.000 3rd Qu.: 0.000 3rd Qu.: 0.000
neg$chr1:10027750 : 1 Max. : 17.708 Max. : 16.162 Max. : 16.210
(Other) :113310
W2.ir W3.ir
Min. :-12.194 Min. :-11.880
1st Qu.: -3.078 1st Qu.: -4.087
Median : -1.000 Median : -2.711
Mean : -1.577 Mean : -2.370
3rd Qu.: 0.000 3rd Qu.: 0.000
Max. : 17.562 Max. : 16.711
我正在尝试使用ggplot
and绘制累积概率stat_ecdf
,
使用此代码
ggplot(ir.m, aes(x=value)) + stat_ecdf(aes(group=variable,colour = variable))
剧情长这样
如何获得平滑的曲线?我需要执行更多的统计操作来获得它吗?
更新代码
ir.d = as.data.frame(ir.m)
denss = split(ir.d, ir.d$variable) %>%
map_df(function(dw) {
denss = density(dw$value, from=min(ir.d$value) - 0.05*diff(range(ir.d$value)),
to=max(ir.d$value) + 0.05*diff(range(ir.d$value)))
data.frame(x=denss$x, y=denss$y, cd=cumsum(denss$y)/sum(denss$y), group=dw$variable[1])
head(denss)
})
summary(denss)
> summary(denss)
x y cd group
Min. :-13.689 Min. :0.0000000 Min. :0.00000 N1.ir:512
1st Qu.: -5.466 1st Qu.:0.0000046 1st Qu.:0.07061 N2.ir:512
Median : 2.757 Median :0.0002487 Median :0.99552 W1.ir :512
Mean : 2.757 Mean :0.0303942 Mean :0.65315 W2.ir :512
3rd Qu.: 10.980 3rd Qu.:0.0148074 3rd Qu.:0.99997 W3.ir :512
Max. : 19.203 Max. :0.9440592 Max. :1.00000
阴谋
ggplot() +
stat_ecdf(data=ir.d, aes(x, colour=variable), alpha=0.8) +
geom_line(data=denss, aes(x, cd, colour=group)) +
theme_classic()