4

我有一个变量df5

头(df,15)

               junc  N1.ir  N2.ir    W1.ir    W2.ir    W3.ir
1  pos$chr1:3197398  0.000000  0.000000  0.000000  0.000000  0.000000
2  pos$chr1:3207049  0.000000  0.000000  0.000000  0.000000  0.000000
3  pos$chr1:3411982  0.000000  0.000000  0.000000  0.000000  0.000000
4  pos$chr1:4342162  0.000000  0.000000  0.000000  0.000000  0.000000
5  pos$chr1:4342918  0.000000  0.000000  0.000000  0.000000  0.000000
6  pos$chr1:4767729 -4.369234 -5.123382 -4.738768 -4.643856 -5.034646
7  pos$chr1:4772814 -3.841302 -3.891419 -4.025029 -3.643856 -3.184425
8  pos$chr1:4798063 -5.038919 -4.847997 -5.497187 -4.035624 -7.543032
9  pos$chr1:4798567 -4.735325 -5.096862 -3.882643 -3.227069 -4.983808
10 pos$chr1:4818730 -8.366322 -7.118941 -8.280771 -6.629357 -6.876517
11 pos$chr1:4820396 -5.514573 -6.330917 -5.898853 -4.700440 -5.830075
12 pos$chr1:4822462 -5.580662 -6.914883 -5.562242 -5.380822 -5.703211
13 pos$chr1:4827155 -4.333273 -4.600904 -4.133399 -4.012824 -3.708345
14 pos$chr1:4829569 -4.287866 -3.874469 -3.977280 -4.209453 -4.490326
15 pos$chr1:4857613 -6.902074 -6.074141 -6.116864 -3.989946 -6.474259

使用后的几行melt

> head(ir.m)
              junc variable     value
1 pos$chr1:3197398 N1.ir  0.000000
2 pos$chr1:3207049 N1.ir  0.000000
3 pos$chr1:3411982 N1.ir  0.000000
4 pos$chr1:4342162 N1.ir  0.000000
5 pos$chr1:4342918 N1.ir  0.000000
6 pos$chr1:4767729 N1.ir -4.369234

并总结

> summary(ir)
                 junc           N1.ir          N2.ir           W1.ir       
 neg$chr1:100030088:     1   Min.   :-11.962   Min.   :-12.141   Min.   :-11.817  
 neg$chr1:100039873:     1   1st Qu.: -4.379   1st Qu.: -4.217   1st Qu.: -4.158  
 neg$chr1:10023338 :     1   Median : -2.807   Median : -2.663   Median : -2.585  
 neg$chr1:10024088 :     1   Mean   : -2.556   Mean   : -2.434   Mean   : -2.362  
 neg$chr1:10025009 :     1   3rd Qu.:  0.000   3rd Qu.:  0.000   3rd Qu.:  0.000  
 neg$chr1:10027750 :     1   Max.   : 17.708   Max.   : 16.162   Max.   : 16.210  
 (Other)           :113310                                                        
     W2.ir            W3.ir       
 Min.   :-12.194   Min.   :-11.880  
 1st Qu.: -3.078   1st Qu.: -4.087  
 Median : -1.000   Median : -2.711  
 Mean   : -1.577   Mean   : -2.370  
 3rd Qu.:  0.000   3rd Qu.:  0.000  
 Max.   : 17.562   Max.   : 16.711  

我正在尝试使用ggplotand绘制累积概率stat_ecdf

使用此代码

ggplot(ir.m, aes(x=value)) + stat_ecdf(aes(group=variable,colour = variable))

剧情长这样

在此处输入图像描述

如何获得平滑的曲线?我需要执行更多的统计操作来获得它吗?

更新代码

ir.d = as.data.frame(ir.m)
denss = split(ir.d, ir.d$variable) %>%
  map_df(function(dw) {
    denss = density(dw$value, from=min(ir.d$value) - 0.05*diff(range(ir.d$value)), 
                   to=max(ir.d$value) + 0.05*diff(range(ir.d$value)))
    data.frame(x=denss$x, y=denss$y, cd=cumsum(denss$y)/sum(denss$y), group=dw$variable[1])
    head(denss)
  })
summary(denss)
> summary(denss)
       x                 y                   cd               group    
 Min.   :-13.689   Min.   :0.0000000   Min.   :0.00000   N1.ir:512  
 1st Qu.: -5.466   1st Qu.:0.0000046   1st Qu.:0.07061   N2.ir:512  
 Median :  2.757   Median :0.0002487   Median :0.99552   W1.ir  :512  
 Mean   :  2.757   Mean   :0.0303942   Mean   :0.65315   W2.ir  :512  
 3rd Qu.: 10.980   3rd Qu.:0.0148074   3rd Qu.:0.99997   W3.ir  :512  
 Max.   : 19.203   Max.   :0.9440592   Max.   :1.00000

阴谋

ggplot() +
  stat_ecdf(data=ir.d, aes(x, colour=variable), alpha=0.8) +
  geom_line(data=denss, aes(x, cd, colour=group)) +
  theme_classic()

在此处输入图像描述

4

2 回答 2

12

ecdf 完全遵循数据,没有任何平滑。但是,您可以通过从数据生成核密度估计(基本上是平滑直方图)并从中创建“ecdf”来创建平滑累积密度。这是一个假数据的例子:

density首先,我们使用该函数生成核密度估计。默认情况下,这为我们提供了 512 个 x 值网格上的密度估计值。然后我们将其用作计算 ecdf 的“数据”,它只是密度的累积和(或者,对于沿 x 轴的任何给定点a ,ecdf 在a处的值是内核密度下的面积曲线(即从-Infa的积分)。

我已将代码打包到下面的函数中,因此您可以看到更改adjust密度函数的参数如何更改平滑的 ecdf。较小的值会adjust减少平滑量,从而创建更接近数据的密度估计。您可以在下面的图中看到,该设置adj=0.1导致平滑 ecdf 的平滑度降低,因此它更接近原始 ecdf 中的步骤。

library(ggplot2)

smooth_ecd = function(adj = 1) {

  # Fake data
  set.seed(2)       
  dat = data.frame(x=rnorm(15))
  
  # Extend range of density estimate beyond data
  e = 0.3 * diff(range(dat$x))
  
  # Kernel density estimate of fake data
  dens = density(dat$x, adjust=adj, from=min(dat$x)-e, to=max(dat$x) +e)
  dens = data.frame(x=dens$x, y=dens$y)
  
  # Plot kernel density (blue), ecdf (red) and smoothed ecdf (black)
  ggplot(dat, aes(x)) + 
    geom_density(adjust=adj, colour="blue", alpha=0.7) +
    geom_line(data=dens, aes(x=x, y=cumsum(y)/sum(y)), size=0.7, colour='grey30') +
    stat_ecdf(colour="red", size=0.6, alpha=0.6) +
    theme_classic() +
    labs(title=paste0("adj=",adj))
}

smooth_ecd(adj=1)
smooth_ecd(adj=0.3)
smooth_ecd(adj=0.1)

在此处输入图像描述

以下是按组执行此操作的一些代码:

library(tidyverse)

# Fake data with two groups
set.seed(2)
dat = data.frame(x=c(rnorm(15, 0, 1), rnorm(20, 0.2, 0.8)), 
                 group=rep(LETTERS[1:2], c(15,20)))

# Split the data by group and calculate the smoothed cumulative density for each group
dens = split(dat, dat$group) %>% 
  map_df(function(d) {
    dens = density(d$x, adjust=0.1, from=min(dat$x) - 0.05*diff(range(dat$x)), 
                   to=max(dat$x) + 0.05*diff(range(dat$x)))
    data.frame(x=dens$x, y=dens$y, cd=cumsum(dens$y)/sum(dens$y), group=d$group[1])
  })

现在我们可以绘制每个平滑的累积密度。在下面的图中,我已经调用stat_ecdf了原始数据以进行比较。

ggplot() +
  stat_ecdf(data=dat, aes(x, colour=group), alpha=0.8, lty="11") +
  geom_line(data=dens, aes(x, cd, colour=group)) +
  theme_classic()

在此处输入图像描述

更新:使用您的数据样本,这就是我得到的。我不知道你是如何在你的图中得到那个长核苷酸字符串作为 x 值的,因为这样的变量不会出现在你发布的数据中的任何地方。

# Melt data
dat = gather(df, variable, value, -junc)

# Split the data by group and calculate the smoothed cumulative density for each group
dens = split(dat, dat$variable) %>% 
  map_df(function(d) {
    dens = density(d$value, adjust=0.1, from=min(dat$value) - 0.05*diff(range(dat$value)), 
                   to=max(dat$value) + 0.05*diff(range(dat$value)))
    data.frame(x=dens$x, y=dens$y, cd=cumsum(dens$y)/sum(dens$y), group=d$variable[1])
  })

ggplot() +
  stat_ecdf(data=dat, aes(value, colour=variable), alpha=0.8, lty="11") +
  geom_line(data=dens, aes(x, cd, colour=group)) +
  theme_classic()

在此处输入图像描述

于 2018-01-04T19:31:49.093 回答
-2

这是一个较旧的线程,但是,我只想提一下,stat_ecdf(..., geom = "line")对于某些人来说,这可能是一个合适的解决方案,可以避免geom_stepecdf 曲线中的步骤。-迈克尔

在此处输入图像描述

于 2020-06-18T14:26:54.857 回答