我需要每隔 5 分钟对我的刻度数据集进行先前的刻度聚合。请注意,我想做的类似于高频包中的 aggregateTrades() 函数。但是由于其他一些数据处理问题,我需要在不使用高频包的情况下解决这个问题。这是我的数据集:
dput(tt)
structure(c(1371.25, NA, 1373.95, NA, NA, 1373, NA, 1373.95,
1373.9, NA, NA, 1374, 1374.15, NA, 1374, 1373.85, 1372.55, 1374.05,
1374.15, 1374.75, NA, NA, 1375.9, 1374.05, NA, NA, NA, NA, NA,
NA, NA, 1375, NA, NA, NA, NA, NA, 1376.35, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, 1376.25, NA, 1378, 1376.5, NA, NA, NA, 1378,
1378, NA, NA, 1378.8, 231.9, 231.85, NA, 231.9, 231.85, 231.9,
231.8, 231.9, 232.6, 231.95, 232.35, 232, 232.1, 232.05, 232.05,
232.05, 231.5, 231.3, NA, NA, 231.1, 231.1, 231.1, 231, 231,
230.95, 230.6, 230.6, 230.7, 230.6, 231, NA, 231, 231, 231.45,
231.65, 231.4, 231.7, 231.3, 231.25, 231.25, 231.4, 231.4, 231.85,
231.75, 231.5, 231.55, 231.35, NA, 231.5, 231.5, NA, 231.5, 231.25,
231.15, 231, 231, 231, 231.05, NA), .indexCLASS = c("POSIXct",
"POSIXt"), tclass = c("POSIXct", "POSIXt"), .indexTZ = "Asia/Calcutta", tzone = "Asia/Calcutta", index = structure(c(1459481850,
1459482301, 1459482302, 1459482303, 1459482304, 1459482305, 1459482306,
1459482307, 1459482309, 1459482310, 1459482311, 1459482312, 1459482314,
1459482315, 1459482316, 1459482317, 1459482318, 1459482319, 1459482320,
1459482321, 1459482322, 1459482323, 1459482324, 1459482326, 1459482328,
1459482329, 1459482330, 1459482331, 1459482332, 1459482336, 1459482337,
1459482338, 1459482339, 1459482342, 1459482344, 1459482346, 1459482347,
1459482348, 1459482349, 1459482350, 1459482351, 1459482354, 1459482355,
1459482356, 1459482357, 1459482358, 1459482359, 1459482362, 1459482363,
1459482364, 1459482369, 1459482370, 1459482371, 1459482372, 1459482373,
1459482378, 1459482379, 1459482380, 1459482382, 1459482388), tzone = "Asia/Calcutta", tclass = c("POSIXct",
"POSIXt")), .Dim = c(60L, 2L), .Dimnames = list(NULL, c("A",
"B")), class = c("xts", "zoo"))
这是我之前的刻度聚合代码:
ag.5min.tt<-tt%>%filter(as.Date(index(tt)))%>%lapply(aggregate(by=cut(format(index(tt), format = "%H:%M:%S"), breaks = "5 mins", Fun=tail)))
我试图用上面的代码做的是每天为 A 和 B 的价格设置 5 分钟的间隔。但我得到了错误。请建议如何解决此错误:
Error in UseMethod("filter_") :
no applicable method for 'filter_' applied to an object of class "c('xts', 'zoo')"
谢谢。
编辑: 将 xts 对象转换为数据框:
tt<-as.data.frame(tt)
tt<-data.frame(Time=rownames(tt), coredata(tt))
ag.5min.tt<-tt%>% filter(as.Date(index(tt)))%>%lapply(aggregate(by=cut(format(index(tt), format = "%H:%M:%S"), breaks = "5 mins", Fun=tail)))
新错误:
Error in eval(substitute(expr), envir, enclos) :
filter condition does not evaluate to a logical vector.
编辑:尝试:
tt$Time<- as.POSIXct(tt$Time, format="%Y-%m-%d %H:%M:%S")
ag.5min.tt<-tt%>% group_by(Time==as.Date(tt$Time))%>%lapply(aggregate(by=cut(format(tt$Time, format = "%H:%M:%S"), breaks = "5 mins", Fun=tail)))
错误:
Error in cut.default(format(tt$Time, format = "%H:%M:%S"), breaks = "5 mins", :
'x' must be numeric
In addition: Warning message:
In eval(substitute(expr), envir, enclos) :
Incompatible methods ("Ops.POSIXt", "Ops.Date") for "=="
结果看起来像这样。每五分钟时间戳将具有该特定时间戳的值,或者如果存在 NA,则该时间戳将具有股票 A 和 B 的最后一个非 NA 值
time A B
1 2016-04-01 09:00:00 NA NA
2 2016-04-01 09:05:00 NA NA
3 2016-04-01 09:10:00 NA NA
4 2016-04-01 09:15:00 1371.25 231.90
5 2016-04-01 09:20:00 1376.35 231.55