我正在查看attributes
ofskbio's
PCoA
方法(如下所列)。我对此API
并不陌生,我希望能够将eigenvectors
原始点投影到类似于.fit_transform
in的新轴上,sklearn.decomposition.PCA
这样我就可以创建一些PC_1 vs PC_2
风格的图。我想出了如何获得eigvals
andproportion_explained
但又features
以None
.
是因为它处于测试阶段吗?
如果有任何使用它的教程,那将不胜感激。我是一个超级粉丝scikit-learn
并且想开始使用更多的scikit's
产品。
| Attributes
| ----------
| short_method_name : str
| Abbreviated ordination method name.
| long_method_name : str
| Ordination method name.
| eigvals : pd.Series
| The resulting eigenvalues. The index corresponds to the ordination
| axis labels
| samples : pd.DataFrame
| The position of the samples in the ordination space, row-indexed by the
| sample id.
| features : pd.DataFrame
| The position of the features in the ordination space, row-indexed by
| the feature id.
| biplot_scores : pd.DataFrame
| Correlation coefficients of the samples with respect to the features.
| sample_constraints : pd.DataFrame
| Site constraints (linear combinations of constraining variables):
| coordinates of the sites in the space of the explanatory variables X.
| These are the fitted site scores
| proportion_explained : pd.Series
| Proportion explained by each of the dimensions in the ordination space.
| The index corresponds to the ordination axis labels
这是我生成principal component analysis
对象的代码。
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaler
from sklearn import decomposition
import seaborn as sns; sns.set_style("whitegrid", {'axes.grid' : False})
import skbio
from scipy.spatial import distance
%matplotlib inline
np.random.seed(0)
# Iris dataset
DF_data = pd.DataFrame(load_iris().data,
index = ["iris_%d" % i for i in range(load_iris().data.shape[0])],
columns = load_iris().feature_names)
n,m = DF_data.shape
# print(n,m)
# 150 4
Se_targets = pd.Series(load_iris().target,
index = ["iris_%d" % i for i in range(load_iris().data.shape[0])],
name = "Species")
# Scaling mean = 0, var = 1
DF_standard = pd.DataFrame(StandardScaler().fit_transform(DF_data),
index = DF_data.index,
columns = DF_data.columns)
# Distance Matrix
Ar_dist = distance.squareform(distance.pdist(DF_standard.T, metric="braycurtis")) # (m x m) distance measure
DM_dist = skbio.stats.distance.DistanceMatrix(Ar_dist, ids=DF_standard.columns)
PCoA = skbio.stats.ordination.pcoa(DM_dist)