7

这是我正在与 quantstrat 合作的多时间框架策略的示例。这是执行多时间框架策略的正确方法还是我做错了?在 quantstrat 演示或谷歌搜索中,我没有遇到任何其他执行多时间框架的示例。

为了保持策略部分简单(这不是某人会交易的策略)并保持对多时间框架方面的关注,我将演示一个使用分时数据5 分钟 OHLC 数据的简单策略。策略逻辑是当分时数据上穿 5 分钟数据的 30 周期 SMA 时买入,当分时数据下穿同一 SMA 时平仓。

例如:如果策略是平的,时间是 13:02,之前观察到的 5 分钟数据的 30 周期 SMA 是 90.55(对于 12:55-结束 13:00 的周期),并且分时数据从低于 90.55 到高于它 (90.56) 是买入,当分时数据再次收盘低于它时,它退出头寸。

为了实现这一点,我需要将分时数据和 5 分钟、30 周期 SMA 放入同一个对象中,以便 quantstrat 进行处理。我得到了 5 分钟的 OHLC xts 并计算了它的 30 周期 SMA。然后我将它合并到刻度数据 xts 对象中,这将为我提供一个包含所有刻度数据的对象,然后每 5 分钟我将获得最后一个观察到的 5 分钟、30 周期 SMA 的一行。

如果在 13:00 有一个 30 周期的 SMA 值,这是针对 12:55-13:00 的 5 分钟。由于 SMA 的下一次更新是 5 分钟后,我需要填写行,直到观察到下一个值(在 13:05)等等。

这是head刻度数据(我拥有的刻度数据不包括毫秒,但我使用以下方法使行独一无二make.index.unique(clemtick)

head(clemtick)
                    Price Volume
2013-01-15 09:00:00 93.90      1
2013-01-15 09:00:00 93.89      1
2013-01-15 09:00:00 93.89      1
2013-01-15 09:00:00 93.88      2
2013-01-15 09:00:00 93.89      1
2013-01-15 09:00:00 93.89      2

这是head1 分钟的数据(每分钟代表前一分钟的数据,例如时间戳 09:01:00 == 09:00:00 - 09:01:00 的数据):

head(clemin)
                     Open  High   Low Close Volume
2013-01-15 09:01:00 93.90 94.04 93.87 93.97   1631
2013-01-15 09:02:00 93.97 93.98 93.90 93.91    522
2013-01-15 09:03:00 93.91 93.97 93.90 93.96    248
2013-01-15 09:04:00 93.95 93.98 93.93 93.95    138
2013-01-15 09:05:00 93.95 93.96 93.91 93.92    143
2013-01-15 09:06:00 93.93 93.97 93.91 93.91    729

将 1 分钟数据转换为 5 分钟数据:

cle5min <- to.minutes5(clemin)
                    clemin.Open clemin.High clemin.Low clemin.Close clemin.Volume
2013-01-15 09:04:00       93.90       94.04      93.87        93.95          2539
2013-01-15 09:09:00       93.95       93.97      93.81        93.89          2356
2013-01-15 09:14:00       93.90       94.05      93.86        93.89          4050
2013-01-15 09:19:00       93.90       94.03      93.84        94.00          2351
2013-01-15 09:24:00       93.99       94.21      93.97        94.18          3261
2013-01-15 09:29:00       94.18       94.26      94.18        94.19          1361

您会注意到第一个 OHLC 是 09:04:00,这是由于该to.minutes5函数的工作方式,这在此线程中进行了讨论。本质上是第一个时间戳 09:04:00 == OHLC 4 分钟数据,从 09:00:00 到 09:04:00。09:09:00 时间戳是从 09:04:00 到 09:09:00 的下一个完整 5 分钟。理想情况下,我希望每个时间戳为 5、10、15 等,但我还没有弄清楚如何做到这一点。

将 5min 数据的 30 SMA 转换为分时数据

clemtick$sma30 <- SMA(cle5min$clemin.Close, 30)

这将使用 SMA 创建一个新列。SMA 需要 30 个周期来计算第一个值,并且SMA 只会出现在每 5 分钟的时间戳(11:29:00、11:34:00、11:39,...)。看起来像:

clemtick["2013-01-15 11:28:59::2013-01-15 11:29:00"]
                    Price Volume    SMA30
2013-01-15 11:28:59 93.87      1       NA
2013-01-15 11:28:59 93.87      1       NA
2013-01-15 11:28:59 93.88      1       NA
2013-01-15 11:29:00 93.87      1 93.92633
2013-01-15 11:29:00 93.87      1       NA
2013-01-15 11:29:00 93.88      1       NA
2013-01-15 11:29:00 93.88      1       NA

现在我需要SMA30用重复值填充列。11:29:00的值适用SMA30于 11:24:00 - 11:29:00 的 OHLC。该值的下一次更新将在 11:34:00 之前进行,因此我需要填写行直到下一个值,因为这是策略在逐行处理时将引用的内容。

clemtick  <- na.locf(clemtick)

现在,如果我再次查询该对象,

clemtick["2013-01-15 11:33:58::2013-01-15 11:34:01"]
                    Price Volume    SMA30
2013-01-15 11:33:58 93.84      1 93.92633
2013-01-15 11:34:00 93.84      1 93.92267
2013-01-15 11:34:00 93.85      1 93.92267
2013-01-15 11:34:01 93.84      1 93.92267

现在我们有了最终的对象,这里正在运行策略:

require(quantstrat)

options("getSymbols.warning4.0"=FALSE)
rm(list=ls(.blotter), envir=.blotter)
Sys.setenv(TZ="UTC")

symbols  <- "clemtick"
currency('USD')
stock(symbols, currency="USD", multiplier=1)

account.st  <- 0
strategy.st  <- portfolio.st <- account.st  <- "multi"
rm.strat(portfolio.st)
rm.strat(strategy.st)

initDate <- "1980-01-01"
tradeSize  <- 1000
initEq  <- tradeSize*length(symbols)
initPortf(portfolio.st, symbols=symbols, initDate=initDate, currency='USD')
initAcct(account.st, portfolios=portfolio.st,
         initDate=initDate, currency='USD', initEq=initEq)
initOrders(portfolio.st, initDate=initDate)

strategy(strategy.st, store=TRUE)

add.signal(strategy.st, name="sigCrossover",
  arguments=list(columns=c("Price", "sma30"), relationship="gt"),
  label="golong") 

add.signal(strategy.st, name="sigCrossover",
  arguments=list(columns=c("Price", "sma30"), relationship="lt"),
  label="exitlong")

#enter rule
add.rule(strategy.st, name="ruleSignal",
  arguments=list(sigcol="golong",
                 sigval=TRUE,
                 ordertype="market",
                 orderside="long",
                 replace=TRUE,
                 prefer="Price",
                 orderqty=1),
  type="enter", path.dep=TRUE, label="long")

#exit rule
add.rule(strategy.st, name = "ruleSignal",
  arguments=list(sigcol="exitlong",
                 sigval=TRUE,
                 ordertype="market",
                 orderside="long",
                 replace=TRUE,
                 prefer="Price",
                 orderqty=-1),
  type="exit", path.dep=TRUE, label="exitlong")

#apply strategy
t1 <- Sys.time()
out2 <- applyStrategy(strategy=strategy.st, portfolios=portfolio.st, debug=TRUE)
t2 <- Sys.time()
print(t2-t1)
head(mktdata)
nrow(mktdata)

总而言之,这是执行多时间框架策略的最佳方法吗?

4

1 回答 1

0

以下是将多时间框架指标/信号纳入您的策略的两种方法。两者都使用 quantstrat 样本数据开箱即用。

两者都遵循相同的策略(并给出相同的结果):该策略在 1 分钟柱上使用 SMA(20),在 30 分钟柱上使用 SMA(10) 来生成交易信号。当 SMA(20, 1 分钟柱线)上穿 SMA(10, 30 分钟柱线)时进入多头头寸。当 SMA(20, 1 分钟柱线)穿过 SMA(10, 30 分钟柱线)下方时退出多头头寸

方法 1:在add.indicator. (您不能使用比交易品种的原始市场数据更高的时间频率)。

from <- "2002-10-20"
to <- "2002-10-24"

symbols <- "GBPUSD"
# Load 1 minute data stored in the quantstrat package
getSymbols.FI(Symbols = symbols,
              dir=system.file('extdata',package='quantstrat'),
              from=from, 
              to=to
)

currency(c('GBP', 'USD'))
exchange_rate('GBPUSD', tick_size=0.0001)

strategy.st <- "multiFrame"
portfolio.st <- "multiFrame"
account.st <- "multiFrame"

initEq <- 50000

rm.strat(strategy.st)
initPortf(portfolio.st, symbols = symbols)
initAcct(account.st, portfolios = portfolio.st, initEq = initEq)
initOrders(portfolio.st)
strategy(strategy.st, store = TRUE)

# Create an SMA on 20 1 minute bars:
add.indicator(strategy.st, name = "SMA", 
              arguments = list(x = quote(Cl(mktdata)),
                                n = 20), 
              label = "MA20")

# Define the function that add.indicator will use to create an SMA(10) on 30 minute bars:
ind30minMA <- function(x, n30min = 10) {

  if (!is.OHLC(x)) 
    stop("Must pass in OHLC data")
  x.h <- to.period(x[, 1:4], period = "minutes", k = 30, indexAt = "endof") 
  #^ Ensure that the timestamp on the lower frequency data is at the END of the bar/candle, to avoid look forward bias.

  # If you need to know what symbol you are currently processing:
  # symbol <- parent.frame(n = 2)$symbol
  sma.h <- SMA(Cl(x.h), n = n30min)
  r <- merge(sma.h, xts(, index(x)), fill= na.locf) 
  #^ Carry forward the last value, no lookforward bias introduced

  r <- r[index(x)]
  # if you don't return the same # of rows in the argument x, then quantstrat won't work correctly. So let's check the data is OK after the merge above:
  stopifnot(NROW(r) == NROW(x))
  r
}

add.indicator(strategy.st, name = "ind30minMA", 
              arguments = list(x = quote(mktdata),
                               n30min = 10), 
              label = "MA30minbar")

add.signal(strategy.st, name = "sigCrossover", 
              arguments = list(columns = c("SMA.MA20", "SMA.MA30minbar"),
                               relationship = "gt"),
              label = "FastCrossUp")

add.signal(strategy.st, name = "sigCrossover", 
           arguments = list(columns = c("SMA.MA20", "SMA.MA30minbar"),
                            relationship = "lt"),
           label = "FastCrossDn")

add.rule(strategy.st,name='ruleSignal', 
         arguments = list(sigcol="FastCrossUp",
                          sigval=TRUE, 
                          orderqty= 100, 
                          ordertype='market', 
                          orderside='long', 
                          threshold=NULL),
         type='enter',
         label='enterL',
         storefun=FALSE
)

add.rule(strategy.st,name='ruleSignal',
         arguments = list(sigcol="FastCrossDn",
                          sigval=TRUE,
                          orderqty='all',
                          ordertype='market',
                          orderside='long',
                          threshold=NULL,
                          orderset='default',
                          replace = TRUE),
         type='exit',
         label='exitL'
)


applyStrategy(strategy.st, portfolio.st)


tail(mktdata)
# Open   High    Low  Close Volume SMA.MA20 SMA.MA30minbar FastCrossUp FastCrossDn
# 2002-10-24 17:54:00 1.5552 1.5552 1.5552 1.5552      0 1.555115        1.55467          NA          NA
# 2002-10-24 17:55:00 1.5552 1.5552 1.5551 1.5551      0 1.555120        1.55467          NA          NA
# 2002-10-24 17:56:00 1.5551 1.5551 1.5551 1.5551      0 1.555125        1.55467          NA          NA
# 2002-10-24 17:57:00 1.5551 1.5551 1.5551 1.5551      0 1.555130        1.55467          NA          NA
# 2002-10-24 17:58:00 1.5551 1.5551 1.5551 1.5551      0 1.555130        1.55467          NA          NA
# 2002-10-24 17:59:00 1.5551 1.5551 1.5551 1.5551      0 1.555135        1.55478          NA          NA

tx <- getTxns(portfolio.st, "GBPUSD")
# Record total PL earned.  This number should be identical to the result from the second approach listed below:
sum(tx$Net.Txn.Realized.PL)
# -0.03

方法 2:这个想法是我们已经计算了名称在全局命名空间中的每日市场数据[symbol].d(见下文我的意思)。显然,这些日常数据也可以从磁盘加载到内存中。我们在不同的时间频率上使用这些预先计算的数据集,而不是计算指标函数内的柱数据(例如在上面的 indDailyMA 中完成):

这种方法可以说是更先进和更高效的内存,因为我们不计算聚合(例如,在使用刻度数据时,这在计算上可能会很昂贵)。

library(quantstrat)

from <- "2002-10-20"
to <- "2002-10-24"

symbols <- "GBPUSD"
# Load 1 minute data stored in the quantstrat package
getSymbols.FI(Symbols = symbols,
              dir=system.file('extdata',package='quantstrat'),
              from=from, 
              to=to
)

currency(c('GBP', 'USD'))
exchange_rate('GBPUSD', tick_size=0.0001)

strategy.st <- "multiFrame"
portfolio.st <- "multiFrame"
account.st <- "multiFrame"

# Parameters:

initEq <- 50000



rm.strat(strategy.st)
initPortf(portfolio.st, symbols = symbols)
initAcct(account.st, portfolios = portfolio.st, initEq = initEq)
initOrders(portfolio.st)
strategy(strategy.st, store = TRUE)


GBPUSD <- GBPUSD[, colnames(GBPUSD) != "Volume"]

# Before running the backtest, create the lower frequency market data
GBPUSD.30m <- to.period(OHLC(GBPUSD), period = "minutes", k = 30, indexAt = "endof", name = "GBPUSD") 

GBPUSD.1m.idx <- index(GBPUSD)

NROW(GBPUSD)
# 5276

# Add the lower frequency data indicators to the higher frequency data that will be processed in quantstrat.  Fill forward the lower frequency moving average

GBPUSD <- merge(GBPUSD, setNames(SMA(Cl(GBPUSD.30m), n = 10), "SMA.MA30minbar"))
GBPUSD$SMA.MA30minbar <- na.locf(GBPUSD$SMA.MA30minbar)

# Note: Short hand for the above will the fill argument, which can be helpful in special cases where NAs only exist in the new data to be added:
# GBPUSD <- merge(GBPUSD, setNames(SMA(Cl(GBPUSD.30m), n = 10), "SMA.MA30minbar"),  fill = na.locf)

NROW(GBPUSD)
# 5276

# After doing this merge, sometimes extra rows will appear beyond what GBPUSD (based on the original 1 min bar data) 
GBPUSD <- GBPUSD[GBPUSD.1m.idx, ]

# Now GBPUSD, which will be the raw data used in applyStrategy, already contains the 30 min bar indicators.

add.indicator(strategy.st, name = "SMA", 
              arguments = list(x = quote(Cl(mktdata)),
                               n = 20), 
              label = "MA20")



add.signal(strategy.st, name = "sigCrossover", 
           arguments = list(columns = c("SMA.MA20", "SMA.MA30minbar"),
                            relationship = "gt"),
           label = "FastCrossUp")

add.signal(strategy.st, name = "sigCrossover", 
           arguments = list(columns = c("SMA.MA20", "SMA.MA30minbar"),
                            relationship = "lt"),
           label = "FastCrossDn")

add.rule(strategy.st,name='ruleSignal', 
         arguments = list(sigcol="FastCrossUp",
                          sigval=TRUE, 
                          orderqty= 100, 
                          ordertype='market', 
                          orderside='long', 
                          threshold=NULL),
         type='enter',
         label='enterL',
         storefun=FALSE
)

add.rule(strategy.st,name='ruleSignal',
         arguments = list(sigcol="FastCrossDn",
                          sigval=TRUE,
                          orderqty='all',
                          ordertype='market',
                          orderside='long',
                          threshold=NULL,
                          orderset='sysMACD',
                          replace = TRUE),
         type='exit',
         label='exitL'
)


applyStrategy(strategy.st, portfolio.st)


tail(mktdata)
# Open   High    Low  Close SMA.MA30minbar SMA.MA20 FastCrossUp FastCrossDn
# 2002-10-24 17:54:00 1.5552 1.5552 1.5552 1.5552        1.55467 1.555115          NA          NA
# 2002-10-24 17:55:00 1.5552 1.5552 1.5551 1.5551        1.55467 1.555120          NA          NA
# 2002-10-24 17:56:00 1.5551 1.5551 1.5551 1.5551        1.55467 1.555125          NA          NA
# 2002-10-24 17:57:00 1.5551 1.5551 1.5551 1.5551        1.55467 1.555130          NA          NA
# 2002-10-24 17:58:00 1.5551 1.5551 1.5551 1.5551        1.55467 1.555130          NA          NA
# 2002-10-24 17:59:00 1.5551 1.5551 1.5551 1.5551        1.55478 1.555135          NA          NA

tx <- getTxns(portfolio.st, "GBPUSD")
sum(tx$Net.Txn.Realized.PL)
# -0.03

# Same result as the first approach, as we would expect

您可能还会发现有关此主题的其他参考资料很有用:

在 quantstrat 中生成不同周期的指标

http://r.789695.n4.nabble.com/R-Quantstrat-package-question-td3772989.html

于 2018-05-16T12:06:01.940 回答