我将在 virtex5 Xilinx Board 上实现部分重新配置。我已经编写了 3 个模块(顶部模块和递增计数器和递减计数器)并通过 Plan-ahead 创建了位流。结果由 2 个 LED(递增或递减计数)显示。我的问题是如何交换柜台分区?或者如何通过时间或外部信号控制icap?我更喜欢不使用 Microblaze,所以为 icap 编写状态机如下:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_arith.ALL;
use IEEE.STD_LOGIC_unsigned.ALL;
library UNISIM;
use UNISIM.VComponents.all;
Library UNIMACRO;
use UNIMACRO.vcomponents.all;
entity Main is
port(
Clk: in std_logic;
Output: out std_logic_vector(2 downto 0)
);
end Main;
architecture Behavioral of Main is
signal Q: std_logic_vector(47 downto 0);
signal Load, Clk1hz, Clk1 : std_logic;
signal Local : std_logic_vector(1 downto 0);
component ROM ------------------------------ ROM Component Decleration
port (
Clka: in std_logic;
Addra: in std_logic_vector(11 downto 0);
Douta: out std_logic_vector(31 downto 0));
end component; -------------------------------------------------------End
signal ROM_Address, ROM_Address_Init : std_logic_vector(11 downto 0); -------- ROM and ICAP Signals Decleration
signal ROM_Data : std_logic_vector(31 downto 0);
signal ICAP_Din, ICAP_Dout : std_logic_vector(31 downto 0);
signal ICAP_CE, ICAP_Clk, ICAP_Clk1, En, ROM_Clk, ROM_Clk1, ICAP_WR : std_logic; --------------------------------------End
begin
Clk1Hz <= Clk1;
process(clk)
begin
if (rising_edge(Clk)) then
if (Q=x"000005F5E100") then
Load <= '1';
Clk1 <= not Clk1;
else
Load <= '0';
end if;
end if;
end process;
Output(0) <= not(En);
Output(2 downto 1) <= not(Local);
----------------------------------------------------
----------------------------------------------------
U_UpDown: entity work.Counter
port map(
Clk => Clk1Hz, En => '1', Output => Local
);
----------------------------------------------------
----------------------------------------------------
U1 : COUNTER_LOAD_MACRO
generic map (
COUNT_BY => X"000000000001", -- Count by value
DEVICE => "VIRTEX5", -- Target Device: "VIRTEX5", "VIRTEX6", "SPARTAN6"
WIDTH_DATA => 48) -- Counter output bus width, 1-48
port map (
Q => Q, -- Counter output, width determined by WIDTH_DATA generic
CLK => CLK, -- 1-bit clock input
CE => '1', -- 1-bit clock enable input
DIRECTION => '1', -- 1-bit up/down count direction input, high is count up
LOAD => LOAD, -- 1-bit active high load input
LOAD_DATA => x"000000000000", -- Counter load data, width determined by WIDTH_DATA generic
RST => '0' -- 1-bit active high synchronous reset
);
--------------------------------------------
--------------------------------------------
process(Clk1Hz) -------------------------------------------- ROM and ICAP Modules and Related Codes
variable Count : integer range 0 to 6:=0;
begin
if (rising_edge(Clk1Hz)) then
Count := Count + 1;
if (Count = 2) then
En <= '1';
ROM_Address_Init <= conv_std_logic_vector(0,12);
else
En <= '0';
end if;
end if;
end process;
--------------------------------------------
--------------------------------------------
U_ROM: ROM
port map (Clka => ROM_Clk1, Addra => ROM_Address, Douta => ROM_Data);
BUFG_inst : BUFG
port map (
O => ROM_Clk1, -- Clock buffer output
I => ROM_Clk -- Clock buffer input
);
BUFG_inst1 : BUFG
port map (
O => ICAP_Clk1, -- Clock buffer output
I => ICAP_Clk -- Clock buffer input
);
ICAP_VIRTEX5_inst : ICAP_VIRTEX5
generic map (
ICAP_WIDTH => "X32") -- "X8", "X16" or "X32"
port map (
BUSY => open, -- Busy output
O => ICAP_Dout, -- 32-bit data output
CE => ICAP_CE, -- Clock enable input
CLK => ICAP_Clk1, -- Clock input
I => ICAP_Din, -- 32-bit data input
WRITE => ICAP_WR -- Write input
);
-- ICAP_Din(31 downto 8) <= x"000000"; -------------------------------End
U_ICAP_SM: block -------------------------------------
type State_Type is (State0, State00, State1, State2, State3, State4, State5, State6);
signal Pr_State, Nx_State : State_Type;
begin
Process(En,Clk)
begin
if (En = '0') then
Pr_State <= State0;
elsif (rising_edge(Clk)) then
Pr_State <= Nx_State;
end if;
end process;
process(Pr_State)
begin
case Pr_State is --*****
when State0 =>
Nx_State <= State00;
ROM_Address <= x"000";
ICAP_WR <= '1';
ROM_Clk <= '0';
ICAP_Clk <= '0';
ICAP_CE <= '1';
when State00 =>
Nx_State <= State1;
ICAP_WR <= '0';
when State1 =>
Nx_State <= State2;
ICAP_CE <= '0';
ROM_Clk <= '1';
when State2 =>
Nx_State <= State3;
ICAP_Din <= ROM_Data;
ROM_Clk <= '0';
when State3 =>
Nx_State <= State4;
ICAP_Clk <= '1';
when State4 =>
Nx_State <= State5;
ICAP_Clk <= '0';
when State5 =>
if (ROM_Address = conv_std_logic_vector(3134,12)) then
Nx_State <= State6;
ICAP_CE <= '1';
ROM_Address <= X"000";
else
Nx_State <= State1;
ROM_Address <= (ROM_Address + 1);
end if;
when State6 =>
ICAP_WR <= '1';
end case;
end process;
end Block U_ICAP_SM; -----------------------------------
end Behavioral;
我将其中一个计数器(例如递增计数器)的位流(.coe 文件)保存在 ROM 中。默认情况下,电路是递减计数,但是当我通过 icap 交换比特流(从 ROM 加载递增计数器的 .coe 文件)时,没有任何反应并且电路正在递减计数。(代码中的*****)我该如何解决?