我在元组列表中有一个numpy 数组二进制(黑白)图像和坐标,例如:
coordlist =[(110, 110), (110, 111), (110, 112), (110, 113), (110, 114), (110, 115), (110, 116), (110, 117), (110, 118), (110, 119), (110, 120), (100, 110), (101, 111), (102, 112), (103, 113), (104, 114), (105, 115), (106, 116), (107, 117), (108, 118), (109, 119), (110, 120)]
或作为:
coordx = [110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110]
coordy = [110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120]
如何使用该坐标列表检查图像中是否有“白色”像素?我还想检查距离该坐标列表远的大约 3 个像素范围内的白色像素。
IE:
for i, j in coordx, coordy:
for k in a range (k-3, k + 3)
for l in a range (l-3, l + 3)
#checking white pixels also for pixel near coordinates list
我想到了“哪里”功能。
from skimage import morphology
import numpy as np
path = 'image/a.jpg'
col = mh.imread(path)
bn0 = col[:,:,0]
bn = (bn0 < 127)
bnsk = morphology.skeletonize(bn)
bnskInt = np.array(bnsk, dtype=np.uint8)
#finding if there are white pixel in the coord list and around that in a 5 pixel range
for i in coordlist:
np.where(?)
更新。
我尝试使用形状 (128, 128) 而不是 (128, 128, 3) 因为我的图像具有以下形状: (a,b) 但现在它找不到白色像素!为什么它会以这种方式找到任何东西?
white_pixel = np.array([255, 255])
img = np.random.randint(0, 256, (128, 128))
print(img[150])
print(img.shape)
img[110, 110] = 255
img[109, 110] = 255
mask = np.zeros((128, 128), dtype=bool)
mask[coordx, coordy] = 1
#structure = np.ones((3, 3, 1))
#mask = scipy.ndimage.morphology.binary_dilation(mask, structure)
is_white = np.all((img * mask) == white_pixel, axis=-1)
# This will tell you which pixels are white
print np.where(is_white)
# This will tell you if any pixels are white
print np.any(is_white)
输出:
(array([], dtype=int32),)
False