0

我目前正在研究环境变量对贝类毒性的影响。这种毒性只发生在某些年份。我想比较有毒年份和无毒年份之间 15 个不同环境变量的时间序列。我的数据或关于 10 年和 6 个位置的数据。我想要1 个窗口/站点,每个窗口包含 10 个 ggplots代表一个参数的 10 个年度时间序列

这是我为一个可重现的示例提供的数据,在一个位置,一个参数(温度):(已更正为可重现)

   structure(list(Date = structure(c(12065, 12065, 12079, 12079, 
12088, 12095, 12095, 12104, 12115, 12115, 12123, 12123, 12130, 
12130, 12135, 12137, 12137, 12142, 12146, 12146, 12149, 12150, 
12150, 12156, 12157, 12157, 12164, 12164, 12165, 12170, 12177, 
12177, 12177, 12184, 12185, 12185, 12191, 12192, 12192, 12198, 
12199, 12199, 12205, 12206, 12206, 12213, 12215, 12215, 12219, 
12219, 12219, 12226, 12233, 12235, 12235, 12240, 12240, 12240, 
12240, 12240, 12240, 12248, 12248, 12248, 12254, 12255, 12255, 
12261, 12263, 12263, 12268, 12268, 12268, 12275, 12275, 12275, 
12282, 12283, 12283, 12289, 12291, 12291, 12296, 12297, 12297, 
12303, 12305, 12305, 12311, 12311, 12318, 12318, 12326, 12331, 
12338, 12352, 12368, 12381, 12395, 12403, 12424, 12436, 12452, 
12464, 12478, 12495, 12507, 12522, 12528, 12534, 12541, 12548, 
12562, 12571, 12571, 12576, 12576, 12583, 12583, 12591, 12598, 
12613, 12620, 12625, 12633, 12639, 12646, 12653, 12661, 12667, 
12676, 12682, 12690, 12696, 12702, 12709, 12716, 12724, 12730, 
12744, 12758, 12772, 12795, 12800, 12814, 12828, 12843, 12856, 
12871, 12877, 12884, 12898, 12905, 12912, 12926, 12933, 12940, 
12954, 12954, 12961, 12961, 12968, 12968, 12982, 12982, 13011, 
13011, 13024, 13024, 13038, 13052, 13052, 13067, 13083, 13094, 
13111, 13122, 13136, 13151, 13166, 13178, 13192, 13206, 13221, 
13236, 13248, 13262, 13270, 13278, 13292, 13298, 13305, 13318, 
13318, 13326, 13332, 13332, 13333, 13339, 13346, 13346, 13377, 
13390, 13402, 13432, 13466, 13529, 13542, 13585, 13599, 13614, 
13626, 13643, 13655, 13669, 13675, 13683, 13698, 13710, 13725, 
13731, 13741, 13754, 13760, 13767, 13781, 13789, 13795, 13809, 
13823, 13838, 13851, 13867, 13901, 13901, 13907, 13921, 13936, 
13936, 13957, 13963, 13963, 13978, 13992, 13992, 14005, 14020, 
14020, 14036, 14036, 14041, 14047, 14047, 14047, 14047, 14047, 
14053, 14054, 14061, 14061, 14069, 14076, 14076, 14076, 14076, 
14077, 14082, 14089, 14089, 14105, 14105, 14105, 14105, 14118, 
14118, 14131, 14131, 14145, 14145, 14152, 14160, 14166, 14173, 
14180, 14188, 14202, 14216, 14230, 14258, 14271, 14287, 14299, 
14312, 14327, 14340, 14354, 14368, 14375, 14382, 14397, 14411, 
14411, 14425, 14425, 14440, 14440, 14447, 14453, 14453, 14467, 
14467, 14474, 14481, 14481, 14488, 14494, 14502, 14509, 14509, 
14516, 14523, 14539, 14565, 14579, 14593, 14607, 14635, 14649, 
14663, 14683, 14700, 14706, 14714, 14719, 14727, 14736, 14749, 
14763, 14763, 14777, 14777, 14791, 14819, 14819, 14824, 14832, 
14832, 14845, 14845, 14861, 14861, 14873, 14873, 14888, 14902, 
14929, 14985, 14999, 15015, 15029, 15043, 15057, 15071, 15085, 
15097, 15111, 15125, 15141, 15141, 15153, 15153, 15167, 15167, 
15181, 15181, 15195, 15195, 15209, 15209, 15223, 15237, 15237, 
15251, 15265, 15281, 15293, 15307, 15321, 15335, 15349, 15377, 
15391, 15405, 15419, 15433, 15447, 15457, 15463, 15474, 15491, 
15503, 15503, 15517, 15517, 15523, 15533, 15545, 15545, 15559, 
15559, 15573, 15573, 15589, 15589, 15601, 15601, 15615, 15629, 
15643, 15657, 15671, 15685, 15702), class = "Date"), Annee = structure(c(9L, 
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 
9L, 9L, 9L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 
10L, 10L, 10L, 10L, 10L, 10L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 
11L, 11L, 11L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 
12L, 12L, 12L, 12L, 12L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 
13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 
13L, 13L, 13L, 13L, 13L, 13L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 
14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 
14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 
14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 
14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 15L, 15L, 15L, 15L, 
15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 
15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 
15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 16L, 16L, 16L, 16L, 16L, 
16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 
16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 17L, 
17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 
17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 
17L, 17L, 17L, 17L, 17L, 17L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 
18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 
18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 
18L), .Label = c("1995", "1996", "1997", "1998", "1999", "2000", 
"2001", "2002", "2003", "2004", "2005", "2006", "2007", "2008", 
"2009", "2010", "2011", "2012", "2013"), class = "factor"), Mois = structure(c(1L, 
1L, 1L, 1L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 
6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 
7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 
8L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 10L, 10L, 10L, 10L, 
11L, 11L, 12L, 12L, 1L, 1L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 5L, 
5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 8L, 8L, 8L, 
8L, 8L, 9L, 9L, 9L, 9L, 10L, 10L, 10L, 10L, 11L, 11L, 11L, 12L, 
12L, 1L, 1L, 1L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 
6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 
10L, 10L, 11L, 11L, 12L, 12L, 1L, 1L, 1L, 2L, 2L, 3L, 3L, 4L, 
4L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 
8L, 9L, 10L, 11L, 1L, 1L, 3L, 3L, 4L, 4L, 5L, 5L, 6L, 6L, 6L, 
7L, 7L, 7L, 8L, 8L, 8L, 9L, 9L, 9L, 10L, 10L, 10L, 11L, 11L, 
12L, 12L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 5L, 
5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 
7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 
9L, 9L, 10L, 10L, 10L, 10L, 11L, 11L, 12L, 12L, 1L, 1L, 2L, 2L, 
3L, 3L, 4L, 4L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 
7L, 8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 9L, 9L, 10L, 10L, 11L, 
12L, 12L, 12L, 1L, 2L, 2L, 3L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 6L, 
6L, 6L, 6L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 10L, 
10L, 11L, 1L, 1L, 2L, 2L, 3L, 3L, 4L, 4L, 5L, 5L, 5L, 6L, 6L, 
6L, 6L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 10L, 10L, 
11L, 11L, 11L, 12L, 12L, 1L, 2L, 2L, 3L, 3L, 4L, 4L, 4L, 5L, 
5L, 5L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 9L, 9L, 
9L, 9L, 10L, 10L, 10L, 11L, 11L, 12L, 12L), .Label = c("01", 
"02", "03", "04", "05", "06", "07", "08", "09", "10", "11", "12"
), class = "factor"), Jourannee = structure(c(12L, 12L, 26L, 
26L, 35L, 42L, 42L, 51L, 62L, 62L, 70L, 70L, 77L, 77L, 82L, 84L, 
84L, 89L, 93L, 93L, 96L, 97L, 97L, 103L, 104L, 104L, 111L, 111L, 
112L, 117L, 124L, 124L, 124L, 131L, 132L, 132L, 138L, 139L, 139L, 
145L, 146L, 146L, 152L, 153L, 153L, 160L, 162L, 162L, 166L, 166L, 
166L, 173L, 180L, 182L, 182L, 187L, 187L, 187L, 187L, 187L, 187L, 
195L, 195L, 195L, 201L, 202L, 202L, 208L, 210L, 210L, 215L, 215L, 
215L, 222L, 222L, 222L, 229L, 230L, 230L, 236L, 238L, 238L, 243L, 
244L, 244L, 250L, 252L, 252L, 258L, 258L, 265L, 265L, 273L, 278L, 
285L, 299L, 314L, 327L, 341L, 349L, 6L, 18L, 34L, 46L, 60L, 77L, 
89L, 104L, 110L, 116L, 123L, 130L, 144L, 153L, 153L, 158L, 158L, 
165L, 165L, 173L, 180L, 195L, 202L, 207L, 215L, 221L, 228L, 235L, 
243L, 249L, 258L, 264L, 272L, 278L, 284L, 291L, 298L, 306L, 312L, 
325L, 339L, 353L, 11L, 16L, 30L, 44L, 59L, 72L, 87L, 93L, 100L, 
114L, 121L, 128L, 142L, 149L, 156L, 170L, 170L, 177L, 177L, 184L, 
184L, 198L, 198L, 227L, 227L, 240L, 240L, 254L, 268L, 268L, 283L, 
299L, 310L, 326L, 337L, 351L, 2L, 17L, 29L, 43L, 57L, 72L, 87L, 
99L, 113L, 121L, 129L, 143L, 149L, 156L, 169L, 169L, 177L, 183L, 
183L, 184L, 190L, 197L, 197L, 228L, 241L, 253L, 283L, 316L, 15L, 
28L, 71L, 85L, 100L, 112L, 129L, 141L, 155L, 161L, 169L, 184L, 
196L, 211L, 217L, 227L, 240L, 246L, 253L, 267L, 275L, 281L, 295L, 
309L, 323L, 336L, 352L, 22L, 22L, 28L, 42L, 57L, 57L, 78L, 84L, 
84L, 99L, 113L, 113L, 126L, 141L, 141L, 157L, 157L, 162L, 168L, 
168L, 168L, 168L, 168L, 174L, 175L, 182L, 182L, 190L, 197L, 197L, 
197L, 197L, 198L, 203L, 210L, 210L, 226L, 226L, 226L, 226L, 239L, 
239L, 252L, 252L, 266L, 266L, 273L, 281L, 287L, 294L, 301L, 309L, 
322L, 336L, 350L, 13L, 26L, 42L, 54L, 67L, 82L, 95L, 109L, 123L, 
130L, 137L, 152L, 166L, 166L, 180L, 180L, 195L, 195L, 202L, 208L, 
208L, 222L, 222L, 229L, 236L, 236L, 243L, 249L, 257L, 264L, 264L, 
271L, 278L, 294L, 319L, 333L, 347L, 360L, 25L, 39L, 53L, 73L, 
90L, 96L, 104L, 109L, 117L, 126L, 139L, 153L, 153L, 167L, 167L, 
181L, 209L, 209L, 214L, 222L, 222L, 235L, 235L, 251L, 251L, 263L, 
263L, 278L, 292L, 318L, 10L, 24L, 40L, 54L, 68L, 82L, 96L, 110L, 
122L, 136L, 150L, 166L, 166L, 178L, 178L, 192L, 192L, 206L, 206L, 
220L, 220L, 234L, 234L, 248L, 262L, 262L, 276L, 290L, 306L, 317L, 
331L, 345L, 358L, 9L, 37L, 51L, 65L, 79L, 93L, 107L, 117L, 123L, 
134L, 151L, 163L, 163L, 177L, 177L, 183L, 193L, 205L, 205L, 219L, 
219L, 233L, 233L, 249L, 249L, 261L, 261L, 275L, 289L, 303L, 316L, 
330L, 344L, 360L), .Label = c("002", "003", "004", "005", "006", 
"007", "008", "009", "010", "011", "012", "013", "014", "015", 
"016", "017", "018", "019", "020", "021", "022", "023", "024", 
"025", "026", "027", "028", "029", "030", "031", "032", "033", 
"034", "035", "036", "037", "038", "039", "040", "041", "042", 
"043", "044", "045", "046", "047", "048", "049", "050", "051", 
"052", "053", "054", "055", "056", "057", "058", "059", "060", 
"061", "062", "063", "064", "065", "066", "067", "068", "069", 
"070", "071", "072", "073", "074", "075", "076", "077", "078", 
"079", "080", "081", "082", "083", "084", "085", "086", "087", 
"088", "089", "090", "091", "092", "093", "094", "095", "096", 
"097", "098", "099", "100", "101", "102", "103", "104", "105", 
"106", "107", "108", "109", "110", "111", "112", "113", "114", 
"115", "116", "117", "118", "119", "120", "121", "122", "123", 
"124", "125", "126", "127", "128", "129", "130", "131", "132", 
"133", "134", "135", "136", "137", "138", "139", "140", "141", 
"142", "143", "144", "145", "146", "147", "148", "149", "150", 
"151", "152", "153", "154", "155", "156", "157", "158", "159", 
"160", "161", "162", "163", "164", "165", "166", "167", "168", 
"169", "170", "171", "172", "173", "174", "175", "176", "177", 
"178", "179", "180", "181", "182", "183", "184", "185", "186", 
"187", "188", "189", "190", "191", "192", "193", "194", "195", 
"196", "197", "198", "199", "200", "201", "202", "203", "204", 
"205", "206", "207", "208", "209", "210", "211", "212", "213", 
"214", "215", "216", "217", "218", "219", "220", "221", "222", 
"223", "224", "225", "226", "227", "228", "229", "230", "231", 
"232", "233", "234", "235", "236", "237", "238", "239", "240", 
"241", "242", "243", "244", "245", "246", "247", "248", "249", 
"250", "251", "252", "253", "254", "255", "256", "257", "258", 
"259", "260", "261", "262", "263", "264", "265", "266", "267", 
"268", "269", "270", "271", "272", "273", "274", "275", "276", 
"277", "278", "279", "280", "281", "282", "283", "284", "285", 
"286", "287", "288", "289", "290", "291", "292", "293", "294", 
"295", "296", "297", "298", "299", "300", "301", "302", "303", 
"304", "305", "306", "307", "308", "309", "310", "311", "312", 
"313", "314", "316", "317", "318", "319", "320", "321", "322", 
"323", "324", "325", "326", "327", "328", "329", "330", "331", 
"332", "333", "334", "335", "336", "337", "338", "339", "340", 
"341", "342", "343", "344", "345", "346", "347", "348", "349", 
"350", "351", "352", "353", "354", "355", "356", "357", "358", 
"360", "361", "362", "363", "364", "365"), class = "factor"), 
    Mesure = c(8, 8, 9.5, 10, 9.5, 10.7, 10.7, 8.5, 9.8, 9.8, 
    10.3, 10.5, 10.4, 10.5, 11.7, 10.6, 10.6, 13.6, 11.1, 11.1, 
    11.4, 11, 11, 13, 11.3, 11.3, 12.8, 13.8, 14.4, 14.5, 13.5, 
    13.9, 15.1, 13.8, 12.5, 12.6, 13.4, 12.6, 12.6, 15, 14.1, 
    14.3, 17.1, 14.7, 14.9, 18.6, 19, 20, 18.8, 19.2, 19.3, 18.9, 
    17.7, 15.9, 16.2, 14.2, 14.7, 14.9, 15.3, 15.3, 16, 18.4, 
    18.4, 20, 20.4, 17.8, 17.8, 19.2, 17.5, 17.7, 17.6, 17.7, 
    21.3, 22.2, 22.2, 22.6, 20.9, 19.2, 20.2, 21.1, 19.7, 19.7, 
    18, 17.6, 18.9, 18.7, 16.9, 17.8, 17.2, 18.1, 17.6, 18.9, 
    17, 16.9, 15, 14.1, 13, 12.6, 11.7, 11, 10.7, 10.3, 10.4, 
    9.5, 8.2, 8.9, 10.1, 10.8, 10.9, 12.8, 13.1, 12.1, 14.8, 
    14.2, 17, 17.6, 17.8, 14.1, 17.7, 14.7, 14.7, 14.2, 15.3, 
    17.8, 18, 19.8, 18.3, 19.4, 16.9, 19, 17.6, 17.4, 16.4, 16.4, 
    15.8, 15.1, 14.8, 14.1, 14.2, 12.8, 12, 10.3, 10.7, 10.2, 
    9.7, 9.4, 7.7, 8, 11, 11.4, 10.7, 12, 13.1, 12.7, 14.3, 15.6, 
    14.7, 15, 18.5, 17.2, 19.3, 12.8, 15, 15, 17.7, 14.9, 17.3, 
    15.6, 16.6, 18.5, 16.4, 17.3, 16.4, 16.2, 15.1, 12.7, 10, 
    8.3, 7.3, 7, 8, 7.4, 7.4, 8.4, 9.2, 9.4, 12.7, 11.5, 14.2, 
    12.7, 12.5, 15.7, 17.8, 18.9, 17.4, 16.6, 18.7, 20.7, 20, 
    18, 18.9, 15.7, 16.1, 18.1, 17.6, 14.7, 12.1, 11, 11.8, 11, 
    12.4, 14.5, 12.7, 12.6, 14.4, 17.9, 16.6, 14.5, 16.2, 17.1, 
    18.7, 17.9, 17.4, 17.2, 18, 16.4, 14.4, 15.5, 14.2, 13.8, 
    12.1, 11.3, 8.9, 9.8, 9.8, 8.9, 8.4, 8.9, 8.9, 10.6, 10.2, 
    10.2, 10.8, 11.7, 11.7, 14, 16.2, 16.2, 14, 15, 15.6, 12.9, 
    12.9, 15, 15.7, 15.7, 16.6, 17.4, 12.9, 16.9, 15.5, 13.9, 
    13.9, 16.1, 16.1, 14.6, 14.1, 18, 18.6, 12.4, 12.4, 15.4, 
    15.4, 15.8, 17.2, 16.5, 16.5, 16.7, 16.8, 15.9, 14.3, 15.4, 
    15, 13.3, 13.2, 12.7, 11.4, 9.4, 6.9, 8.2, 8.4, 8.2, 9.5, 
    11.1, 11, 12.8, 12, 12.3, 13, 16.6, 13.5, 16.7, 14.2, 19.3, 
    13.7, 16.1, 14.2, 14.1, 17.2, 15, 17.3, 19.5, 16.2, 18.1, 
    17.4, 15.4, 16.9, 14.7, 16.6, 17.2, 16.6, 15.4, 11.8, 11.8, 
    10.2, 10, 7.1, 8.3, 8.2, 8, 9.8, 10.2, 12.1, 11.7, 13.4, 
    11.2, 13.1, 10.6, 13.2, 12.9, 14.6, 18, 12.7, 15.1, 16.3, 
    11.9, 15.7, 14.6, 17, 15.2, 17.5, 15, 16.3, 15.5, 15.7, 13, 
    7.7, 7.9, 8.4, 9.2, 8.7, 10, 12.1, 13.6, 15.3, 14.89, 13.05, 
    13.8, 14.89, 14.9, 16.41, 16.1, 16.39, 11.7, 14.8, 15.56, 
    16.72, 17, 18.07, 17.4, 15, 16.79, 18.27, 16.39, 15.6, 14.75, 
    13.87, 12.2, 11, 11.8, 9.71, 9.52, 10.47, 11.44, 12.05, 11.49, 
    11.6, 12.83, 14.05, 17.14, 12.6, 14.8, 12.6, 15.16, 16.1, 
    15.32, 16.8, 18.01, 15.5, 16.65, 18.8, 20.36, 16.8, 17.52, 
    15.6, 17.35, 15.8, 15.62, 14.86, 13.2, 12.11, 11.65, 12)), .Names = c("Date", 
"Annee", "Mois", "Jourannee", "Mesure"), class = "data.frame", row.names = c("7413", 
"7440", "16263", "19364", "16266", "22684", "22705", "9711", 
"18115", "18133", "20630", "21431", "21054", "21437", "26379", 
"22192", "22243", "34022", "24087", "24124", "25291", "23623", 
"23663", "31760", "24950", "24959", "31098", "34997", "37850", 
"38311", "33673", "35459", "40853", "34839", "29922", "30310", 
"33231", "30314", "30326", "40496", "36427", "37419", "53855", 
"39326", "40145", "64409", "69950", "81748", "66481", "72995", 
"74404", "68002", "58822", "45098", "47124", "36883", "39239", 
"40140", "41558", "41600", "45858", "63000", "63005", "81502", 
"84446", "59280", "59288", "72676", "57414", "58961", "58115", 
"58991", "89667", "91764", "91768", "92261", "87505", "72951", 
"83212", "88778", "78851", "78893", "60137", "58123", "68201", 
"65525", "52759", "59289", "55419", "61881", "58154", "68003", 
"53356", "52695", "40657", "36449", "31885", "30332", "26459", 
"23669", "22574", "20511", "20903", "16118", "8086", "12079", 
"19751", "22853", "23163", "30939", "32157", "27887", "39661", 
"36753", "53067", "57893", "59172", "36321", "58700", "39167", 
"39170", "36734", "41402", "59170", "59903", "79538", "62765", 
"75136", "52653", "69435", "57897", "56565", "48945", "48951", 
"44503", "40840", "39670", "36315", "36742", "30945", "27506", 
"20514", "22577", "20126", "17341", "15719", "6445", "7337", 
"23464", "25247", "22580", "27509", "32163", "30559", "37312", 
"43405", "39176", "40414", "63157", "54854", "74032", "30952", 
"40404", "40417", "58699", "40005", "56083", "43409", "51235", 
"63154", "49001", "56088", "48939", "46903", "40834", "30548", 
"19184", "8756", "4488", "3263", "7334", "5070", "5079", "9252", 
"14404", "15713", "30545", "25632", "36722", "30554", "29683", 
"44042", "59178", "67753", "56643", "51255", "65461", "86321", 
"81509", "59912", "67781", "44028", "46318", "61761", "57905", 
"39173", "27890", "23455", "26624", "23461", "29204", "38270", 
"30556", "30171", "37778", "59417", "51253", "38275", "46909", 
"53720", "65458", "59418", "56588", "55061", "59906", "48962", 
"37783", "42312", "36729", "34791", "27881", "24836", "12045", 
"17979", "17984", "12054", "9250", "12064", "12072", "22002", 
"20109", "20110", "22851", "26337", "26343", "35822", "46898", 
"46901", "35832", "40398", "43545", "31363", "31366", "40409", 
"44036", "44039", "51229", "56644", "31360", "52652", "42381", 
"35285", "35288", "46301", "46304", "38784", "36367", "59915", 
"64162", "29209", "29214", "41856", "41859", "44511", "54826", 
"50116", "50123", "51750", "52291", "45044", "37307", "41911", 
"40401", "32853", "32456", "30551", "25244", "15716", "3183", 
"8084", "9255", "8088", "16121", "24000", "23451", "30942", "27499", 
"28718", "31659", "51239", "33546", "51749", "36763", "74022", 
"34331", "46314", "36739", "36327", "54836", "40426", "56091", 
"76239", "46918", "61765", "56576", "41862", "52655", "39178", 
"51245", "54846", "51252", "41865", "26627", "26633", "20111", 
"19192", "3458", "8753", "8082", "7331", "18038", "20116", "27951", 
"26348", "33149", "24365", "32151", "22014", "32459", "31371", 
"38781", "59900", "30563", "40837", "47885", "27080", "44045", 
"38786", "53065", "41042", "57129", "40420", "47846", "42315", 
"44048", "31656", "6442", "7052", "9258", "14410", "10555", "19188", 
"27884", "33979", "41399", "39928", "32069", "34796", "39931", 
"40008", "49774", "46321", "48767", "26353", "39665", "43246", 
"52091", "53071", "61427", "56562", "40428", "52180", "62728", 
"48774", "43399", "39575", "35204", "28221", "23458", "26637", 
"17853", "16513", "21209", "25556", "27842", "25597", "25991", 
"31297", "36208", "54390", "30174", "39673", "30177", "41010", 
"46309", "41781", "52294", "61206", "42318", "51654", "66398", 
"84164", "52298", "57710", "43416", "56444", "44500", "43880", 
"39901", "32468", "28144", "26261", "27515"))

这是我的程序的摘录

p<-list()
  #Creating the graphs year by year
  for(a in 1: 10){
    #selecting the year
    An<-baie[baie$Annee==unique(baie$Annee)[a],]
    moyparam<-ddply(An, .(Date, Annee, Mois, Jourannee), function(x) data.frame(Mesure=mean(x$Mesure)))
        p[[a]]<-ggplot(data=moyparam, aes(x=moyparam$Date, y=moyparam$Mesure))+geom_point()+theme_bw()
  }
  grid.arrange(p)
#or
  multiplot(plotlist=p, layout=matrix(c(1:10),nrow=2,ncol=5, byrow=TRUE)) 

我设法分别绘制每个图表,它们甚至存储在一个列表中,但是当我显示列表或尝试进行多重绘图时,我收到一条消息:

data.frame(x = c(15349, 15365, 15377, 15392, 15411, 15412, 15419, : 参数暗示不同的行数

我哪里错了?也许答案很简单,但我认为我可以对这个问题使用新的观点。谢谢你能给我的任何帮助。

作为更新:感谢 Roland 和 noah 指出我的错误并如此迅速地帮助我!但这里有一个精度:

我之前没有提到它,但是我的代码比这里写的要复杂一些。实际上,我只在观察到搁架毒性的年份在“风险期”上添加部分彩色背景(以便我可以比较有毒年份(准确地说:风险期)和无毒年份(整个年)。所以我的代码正在测试年份是否有毒,如果是,它会在风险期添加彩色背景。我之前没有放它,因为即使没有这个测试也会发生我的错误,我现在提到它是因为它解释了为什么我不能使用构面网格(或者我可以吗?有没有办法可以只在某些构面上添加部分彩色背景?)

4

1 回答 1

2

如果您更正了$对 aes() 的误用,代码将按预期工作,

    p[[a]] <- ggplot(data=moyparam, aes(x=Date, y=Mesure)) + 
                     geom_point()+theme_bw()

这是一种更简洁的处理方式:

baie2 = plyr::ddply(baie, .(Date, Annee, Mois, Jourannee), 
                    summarise, Mesure = mean(Mesure))

base_plot = ggplot(baie2, aes(x=Date, y=Mesure)) + geom_point()+theme_bw()
lp = plyr::dlply(baie2, "Annee", `%+%`, e1 = base_plot)

您可以从中排列页面中的所有图:

gridExtra::grid.arrange(grobs = lp)

现在,对于更广泛的问题,您有两个选择:

  • 使用分面作为年份,并使用循环 / **ply 为每个站点打开一个新页面

    base_plot + facet_wrap(~Annee, scales="free")

  • 使用gridExtra::marrangeGrob,如上面的 grid.arrange ,但如有必要,会自动将布局拆分为多个页面。它也适用于 ggsave。

于 2013-06-04T10:42:25.330 回答