我正在寻找有关如何反转 4x4 矩阵的示例代码实现。我知道有高斯消除、LU 分解等,但我没有详细查看它们,我只是在寻找执行此操作的代码。
理想的语言是 C++,数据以列优先顺序以 16 个浮点数的数组形式提供。
我正在寻找有关如何反转 4x4 矩阵的示例代码实现。我知道有高斯消除、LU 分解等,但我没有详细查看它们,我只是在寻找执行此操作的代码。
理想的语言是 C++,数据以列优先顺序以 16 个浮点数的数组形式提供。
这里:
bool gluInvertMatrix(const double m[16], double invOut[16])
{
double inv[16], det;
int i;
inv[0] = m[5] * m[10] * m[15] -
m[5] * m[11] * m[14] -
m[9] * m[6] * m[15] +
m[9] * m[7] * m[14] +
m[13] * m[6] * m[11] -
m[13] * m[7] * m[10];
inv[4] = -m[4] * m[10] * m[15] +
m[4] * m[11] * m[14] +
m[8] * m[6] * m[15] -
m[8] * m[7] * m[14] -
m[12] * m[6] * m[11] +
m[12] * m[7] * m[10];
inv[8] = m[4] * m[9] * m[15] -
m[4] * m[11] * m[13] -
m[8] * m[5] * m[15] +
m[8] * m[7] * m[13] +
m[12] * m[5] * m[11] -
m[12] * m[7] * m[9];
inv[12] = -m[4] * m[9] * m[14] +
m[4] * m[10] * m[13] +
m[8] * m[5] * m[14] -
m[8] * m[6] * m[13] -
m[12] * m[5] * m[10] +
m[12] * m[6] * m[9];
inv[1] = -m[1] * m[10] * m[15] +
m[1] * m[11] * m[14] +
m[9] * m[2] * m[15] -
m[9] * m[3] * m[14] -
m[13] * m[2] * m[11] +
m[13] * m[3] * m[10];
inv[5] = m[0] * m[10] * m[15] -
m[0] * m[11] * m[14] -
m[8] * m[2] * m[15] +
m[8] * m[3] * m[14] +
m[12] * m[2] * m[11] -
m[12] * m[3] * m[10];
inv[9] = -m[0] * m[9] * m[15] +
m[0] * m[11] * m[13] +
m[8] * m[1] * m[15] -
m[8] * m[3] * m[13] -
m[12] * m[1] * m[11] +
m[12] * m[3] * m[9];
inv[13] = m[0] * m[9] * m[14] -
m[0] * m[10] * m[13] -
m[8] * m[1] * m[14] +
m[8] * m[2] * m[13] +
m[12] * m[1] * m[10] -
m[12] * m[2] * m[9];
inv[2] = m[1] * m[6] * m[15] -
m[1] * m[7] * m[14] -
m[5] * m[2] * m[15] +
m[5] * m[3] * m[14] +
m[13] * m[2] * m[7] -
m[13] * m[3] * m[6];
inv[6] = -m[0] * m[6] * m[15] +
m[0] * m[7] * m[14] +
m[4] * m[2] * m[15] -
m[4] * m[3] * m[14] -
m[12] * m[2] * m[7] +
m[12] * m[3] * m[6];
inv[10] = m[0] * m[5] * m[15] -
m[0] * m[7] * m[13] -
m[4] * m[1] * m[15] +
m[4] * m[3] * m[13] +
m[12] * m[1] * m[7] -
m[12] * m[3] * m[5];
inv[14] = -m[0] * m[5] * m[14] +
m[0] * m[6] * m[13] +
m[4] * m[1] * m[14] -
m[4] * m[2] * m[13] -
m[12] * m[1] * m[6] +
m[12] * m[2] * m[5];
inv[3] = -m[1] * m[6] * m[11] +
m[1] * m[7] * m[10] +
m[5] * m[2] * m[11] -
m[5] * m[3] * m[10] -
m[9] * m[2] * m[7] +
m[9] * m[3] * m[6];
inv[7] = m[0] * m[6] * m[11] -
m[0] * m[7] * m[10] -
m[4] * m[2] * m[11] +
m[4] * m[3] * m[10] +
m[8] * m[2] * m[7] -
m[8] * m[3] * m[6];
inv[11] = -m[0] * m[5] * m[11] +
m[0] * m[7] * m[9] +
m[4] * m[1] * m[11] -
m[4] * m[3] * m[9] -
m[8] * m[1] * m[7] +
m[8] * m[3] * m[5];
inv[15] = m[0] * m[5] * m[10] -
m[0] * m[6] * m[9] -
m[4] * m[1] * m[10] +
m[4] * m[2] * m[9] +
m[8] * m[1] * m[6] -
m[8] * m[2] * m[5];
det = m[0] * inv[0] + m[1] * inv[4] + m[2] * inv[8] + m[3] * inv[12];
if (det == 0)
return false;
det = 1.0 / det;
for (i = 0; i < 16; i++)
invOut[i] = inv[i] * det;
return true;
}
这是从 GLU 库的MESA实现中提取的。
如果有人在寻找更个性化的代码和“更容易阅读”,那么我得到了这个
var A2323 = m.m22 * m.m33 - m.m23 * m.m32 ;
var A1323 = m.m21 * m.m33 - m.m23 * m.m31 ;
var A1223 = m.m21 * m.m32 - m.m22 * m.m31 ;
var A0323 = m.m20 * m.m33 - m.m23 * m.m30 ;
var A0223 = m.m20 * m.m32 - m.m22 * m.m30 ;
var A0123 = m.m20 * m.m31 - m.m21 * m.m30 ;
var A2313 = m.m12 * m.m33 - m.m13 * m.m32 ;
var A1313 = m.m11 * m.m33 - m.m13 * m.m31 ;
var A1213 = m.m11 * m.m32 - m.m12 * m.m31 ;
var A2312 = m.m12 * m.m23 - m.m13 * m.m22 ;
var A1312 = m.m11 * m.m23 - m.m13 * m.m21 ;
var A1212 = m.m11 * m.m22 - m.m12 * m.m21 ;
var A0313 = m.m10 * m.m33 - m.m13 * m.m30 ;
var A0213 = m.m10 * m.m32 - m.m12 * m.m30 ;
var A0312 = m.m10 * m.m23 - m.m13 * m.m20 ;
var A0212 = m.m10 * m.m22 - m.m12 * m.m20 ;
var A0113 = m.m10 * m.m31 - m.m11 * m.m30 ;
var A0112 = m.m10 * m.m21 - m.m11 * m.m20 ;
var det = m.m00 * ( m.m11 * A2323 - m.m12 * A1323 + m.m13 * A1223 )
- m.m01 * ( m.m10 * A2323 - m.m12 * A0323 + m.m13 * A0223 )
+ m.m02 * ( m.m10 * A1323 - m.m11 * A0323 + m.m13 * A0123 )
- m.m03 * ( m.m10 * A1223 - m.m11 * A0223 + m.m12 * A0123 ) ;
det = 1 / det;
return new Matrix4x4() {
m00 = det * ( m.m11 * A2323 - m.m12 * A1323 + m.m13 * A1223 ),
m01 = det * - ( m.m01 * A2323 - m.m02 * A1323 + m.m03 * A1223 ),
m02 = det * ( m.m01 * A2313 - m.m02 * A1313 + m.m03 * A1213 ),
m03 = det * - ( m.m01 * A2312 - m.m02 * A1312 + m.m03 * A1212 ),
m10 = det * - ( m.m10 * A2323 - m.m12 * A0323 + m.m13 * A0223 ),
m11 = det * ( m.m00 * A2323 - m.m02 * A0323 + m.m03 * A0223 ),
m12 = det * - ( m.m00 * A2313 - m.m02 * A0313 + m.m03 * A0213 ),
m13 = det * ( m.m00 * A2312 - m.m02 * A0312 + m.m03 * A0212 ),
m20 = det * ( m.m10 * A1323 - m.m11 * A0323 + m.m13 * A0123 ),
m21 = det * - ( m.m00 * A1323 - m.m01 * A0323 + m.m03 * A0123 ),
m22 = det * ( m.m00 * A1313 - m.m01 * A0313 + m.m03 * A0113 ),
m23 = det * - ( m.m00 * A1312 - m.m01 * A0312 + m.m03 * A0112 ),
m30 = det * - ( m.m10 * A1223 - m.m11 * A0223 + m.m12 * A0123 ),
m31 = det * ( m.m00 * A1223 - m.m01 * A0223 + m.m02 * A0123 ),
m32 = det * - ( m.m00 * A1213 - m.m01 * A0213 + m.m02 * A0113 ),
m33 = det * ( m.m00 * A1212 - m.m01 * A0212 + m.m02 * A0112 ),
};
我不写代码,但我的程序写了。我做了一个小程序来制作一个计算任何 N 矩阵的行列式和逆矩阵的程序。
我这样做是因为过去我需要一个逆 5x5 矩阵的代码,但地球上没有人这样做,所以我做了一个。
看看这里的程序。
编辑:矩阵布局是逐行的(意思m01
是在第一行和第二列)。语言也是 C#,但应该很容易转换成 C。
如果您需要具有很多功能的 C++ 矩阵库,请查看 Eigen 库 - http://eigen.tuxfamily.org
我“汇总”了 MESA 实现(还编写了几个单元测试以确保它确实有效)。
这里:
float invf(int i,int j,const float* m){
int o = 2+(j-i);
i += 4+o;
j += 4-o;
#define e(a,b) m[ ((j+b)%4)*4 + ((i+a)%4) ]
float inv =
+ e(+1,-1)*e(+0,+0)*e(-1,+1)
+ e(+1,+1)*e(+0,-1)*e(-1,+0)
+ e(-1,-1)*e(+1,+0)*e(+0,+1)
- e(-1,-1)*e(+0,+0)*e(+1,+1)
- e(-1,+1)*e(+0,-1)*e(+1,+0)
- e(+1,-1)*e(-1,+0)*e(+0,+1);
return (o%2)?inv : -inv;
#undef e
}
bool inverseMatrix4x4(const float *m, float *out)
{
float inv[16];
for(int i=0;i<4;i++)
for(int j=0;j<4;j++)
inv[j*4+i] = invf(i,j,m);
double D = 0;
for(int k=0;k<4;k++) D += m[k] * inv[k*4];
if (D == 0) return false;
D = 1.0 / D;
for (int i = 0; i < 16; i++)
out[i] = inv[i] * D;
return true;
}
我写了一些关于这一点的文章,并在我的博客上展示了积极/消极因素的模式。
正如@LiraNuna 所建议的那样,在许多平台上都可以使用此类例程的硬件加速版本,因此我很高兴拥有一个可读且简洁的“备份版本”。
注意:这可能比 MESA 实现慢 3.5 倍或更差。您可以改变因素的模式以删除一些添加等......但它会失去可读性并且仍然不会很快。
template<typename Matrix>
static inline void InvertMatrix4(const Matrix& m, Matrix& im, double& det)
{
double A2323 = m(2, 2) * m(3, 3) - m(2, 3) * m(3, 2);
double A1323 = m(2, 1) * m(3, 3) - m(2, 3) * m(3, 1);
double A1223 = m(2, 1) * m(3, 2) - m(2, 2) * m(3, 1);
double A0323 = m(2, 0) * m(3, 3) - m(2, 3) * m(3, 0);
double A0223 = m(2, 0) * m(3, 2) - m(2, 2) * m(3, 0);
double A0123 = m(2, 0) * m(3, 1) - m(2, 1) * m(3, 0);
double A2313 = m(1, 2) * m(3, 3) - m(1, 3) * m(3, 2);
double A1313 = m(1, 1) * m(3, 3) - m(1, 3) * m(3, 1);
double A1213 = m(1, 1) * m(3, 2) - m(1, 2) * m(3, 1);
double A2312 = m(1, 2) * m(2, 3) - m(1, 3) * m(2, 2);
double A1312 = m(1, 1) * m(2, 3) - m(1, 3) * m(2, 1);
double A1212 = m(1, 1) * m(2, 2) - m(1, 2) * m(2, 1);
double A0313 = m(1, 0) * m(3, 3) - m(1, 3) * m(3, 0);
double A0213 = m(1, 0) * m(3, 2) - m(1, 2) * m(3, 0);
double A0312 = m(1, 0) * m(2, 3) - m(1, 3) * m(2, 0);
double A0212 = m(1, 0) * m(2, 2) - m(1, 2) * m(2, 0);
double A0113 = m(1, 0) * m(3, 1) - m(1, 1) * m(3, 0);
double A0112 = m(1, 0) * m(2, 1) - m(1, 1) * m(2, 0);
det = m(0, 0) * ( m(1, 1) * A2323 - m(1, 2) * A1323 + m(1, 3) * A1223 )
- m(0, 1) * ( m(1, 0) * A2323 - m(1, 2) * A0323 + m(1, 3) * A0223 )
+ m(0, 2) * ( m(1, 0) * A1323 - m(1, 1) * A0323 + m(1, 3) * A0123 )
- m(0, 3) * ( m(1, 0) * A1223 - m(1, 1) * A0223 + m(1, 2) * A0123 );
det = 1 / det;
im(0, 0) = det * ( m(1, 1) * A2323 - m(1, 2) * A1323 + m(1, 3) * A1223 );
im(0, 1) = det * - ( m(0, 1) * A2323 - m(0, 2) * A1323 + m(0, 3) * A1223 );
im(0, 2) = det * ( m(0, 1) * A2313 - m(0, 2) * A1313 + m(0, 3) * A1213 );
im(0, 3) = det * - ( m(0, 1) * A2312 - m(0, 2) * A1312 + m(0, 3) * A1212 );
im(1, 0) = det * - ( m(1, 0) * A2323 - m(1, 2) * A0323 + m(1, 3) * A0223 );
im(1, 1) = det * ( m(0, 0) * A2323 - m(0, 2) * A0323 + m(0, 3) * A0223 );
im(1, 2) = det * - ( m(0, 0) * A2313 - m(0, 2) * A0313 + m(0, 3) * A0213 );
im(1, 3) = det * ( m(0, 0) * A2312 - m(0, 2) * A0312 + m(0, 3) * A0212 );
im(2, 0) = det * ( m(1, 0) * A1323 - m(1, 1) * A0323 + m(1, 3) * A0123 );
im(2, 1) = det * - ( m(0, 0) * A1323 - m(0, 1) * A0323 + m(0, 3) * A0123 );
im(2, 2) = det * ( m(0, 0) * A1313 - m(0, 1) * A0313 + m(0, 3) * A0113 );
im(2, 3) = det * - ( m(0, 0) * A1312 - m(0, 1) * A0312 + m(0, 3) * A0112 );
im(3, 0) = det * - ( m(1, 0) * A1223 - m(1, 1) * A0223 + m(1, 2) * A0123 );
im(3, 1) = det * ( m(0, 0) * A1223 - m(0, 1) * A0223 + m(0, 2) * A0123 );
im(3, 2) = det * - ( m(0, 0) * A1213 - m(0, 1) * A0213 + m(0, 2) * A0113 );
im(3, 3) = det * ( m(0, 0) * A1212 - m(0, 1) * A0212 + m(0, 2) * A0112 );
}
您可以使用GNU Scientific Library或在其中查找代码。
编辑:您似乎想要线性代数部分。
这是一个小型(只有一个标头)C++矢量数学库(面向 3D 编程)。如果你使用它,请记住它在内存中的矩阵布局与 OpenGL 所期望的相比是倒置的,我玩得很开心......
受@shoosh 的启发,我检查了 MESA 实现,我发现矩阵求逆在最近的 mesa 版本中看起来完全不同。我想这些都是很好的改进。这是Mesa-17.3.9的矩阵求逆代码:
/* Returns true for success, false for failure (singular matrix) */
bool DirectVolumeRenderer::_mesa_invert_matrix_general( GLfloat out[16], const GLfloat in[16] )
{
/**
* References an element of 4x4 matrix.
* Calculate the linear storage index of the element and references it.
*/
#define MAT(m,r,c) (m)[(c)*4+(r)]
/**
* Swaps the values of two floating point variables.
*/
#define SWAP_ROWS(a, b) { GLfloat *_tmp = a; (a)=(b); (b)=_tmp; }
const GLfloat *m = in;
GLfloat wtmp[4][8];
GLfloat m0, m1, m2, m3, s;
GLfloat *r0, *r1, *r2, *r3;
r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3];
r0[0] = MAT(m,0,0), r0[1] = MAT(m,0,1),
r0[2] = MAT(m,0,2), r0[3] = MAT(m,0,3),
r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0,
r1[0] = MAT(m,1,0), r1[1] = MAT(m,1,1),
r1[2] = MAT(m,1,2), r1[3] = MAT(m,1,3),
r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0,
r2[0] = MAT(m,2,0), r2[1] = MAT(m,2,1),
r2[2] = MAT(m,2,2), r2[3] = MAT(m,2,3),
r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0,
r3[0] = MAT(m,3,0), r3[1] = MAT(m,3,1),
r3[2] = MAT(m,3,2), r3[3] = MAT(m,3,3),
r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0;
/* choose pivot - or die */
if (fabsf(r3[0])>fabsf(r2[0])) SWAP_ROWS(r3, r2);
if (fabsf(r2[0])>fabsf(r1[0])) SWAP_ROWS(r2, r1);
if (fabsf(r1[0])>fabsf(r0[0])) SWAP_ROWS(r1, r0);
if (0.0F == r0[0])
return false;
/* eliminate first variable */
m1 = r1[0]/r0[0]; m2 = r2[0]/r0[0]; m3 = r3[0]/r0[0];
s = r0[1]; r1[1] -= m1 * s; r2[1] -= m2 * s; r3[1] -= m3 * s;
s = r0[2]; r1[2] -= m1 * s; r2[2] -= m2 * s; r3[2] -= m3 * s;
s = r0[3]; r1[3] -= m1 * s; r2[3] -= m2 * s; r3[3] -= m3 * s;
s = r0[4];
if (s != 0.0F) { r1[4] -= m1 * s; r2[4] -= m2 * s; r3[4] -= m3 * s; }
s = r0[5];
if (s != 0.0F) { r1[5] -= m1 * s; r2[5] -= m2 * s; r3[5] -= m3 * s; }
s = r0[6];
if (s != 0.0F) { r1[6] -= m1 * s; r2[6] -= m2 * s; r3[6] -= m3 * s; }
s = r0[7];
if (s != 0.0F) { r1[7] -= m1 * s; r2[7] -= m2 * s; r3[7] -= m3 * s; }
/* choose pivot - or die */
if (fabsf(r3[1])>fabsf(r2[1])) SWAP_ROWS(r3, r2);
if (fabsf(r2[1])>fabsf(r1[1])) SWAP_ROWS(r2, r1);
if (0.0F == r1[1])
return false;
/* eliminate second variable */
m2 = r2[1]/r1[1]; m3 = r3[1]/r1[1];
r2[2] -= m2 * r1[2]; r3[2] -= m3 * r1[2];
r2[3] -= m2 * r1[3]; r3[3] -= m3 * r1[3];
s = r1[4]; if (0.0F != s) { r2[4] -= m2 * s; r3[4] -= m3 * s; }
s = r1[5]; if (0.0F != s) { r2[5] -= m2 * s; r3[5] -= m3 * s; }
s = r1[6]; if (0.0F != s) { r2[6] -= m2 * s; r3[6] -= m3 * s; }
s = r1[7]; if (0.0F != s) { r2[7] -= m2 * s; r3[7] -= m3 * s; }
/* choose pivot - or die */
if (fabsf(r3[2])>fabsf(r2[2])) SWAP_ROWS(r3, r2);
if (0.0F == r2[2])
return false;
/* eliminate third variable */
m3 = r3[2]/r2[2];
r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4],
r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6],
r3[7] -= m3 * r2[7];
/* last check */
if (0.0F == r3[3])
return false;
s = 1.0F/r3[3]; /* now back substitute row 3 */
r3[4] *= s; r3[5] *= s; r3[6] *= s; r3[7] *= s;
m2 = r2[3]; /* now back substitute row 2 */
s = 1.0F/r2[2];
r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2),
r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2);
m1 = r1[3];
r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1,
r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1;
m0 = r0[3];
r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0,
r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0;
m1 = r1[2]; /* now back substitute row 1 */
s = 1.0F/r1[1];
r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1),
r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1);
m0 = r0[2];
r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0,
r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0;
m0 = r0[1]; /* now back substitute row 0 */
s = 1.0F/r0[0];
r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0),
r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0);
MAT(out,0,0) = r0[4]; MAT(out,0,1) = r0[5],
MAT(out,0,2) = r0[6]; MAT(out,0,3) = r0[7],
MAT(out,1,0) = r1[4]; MAT(out,1,1) = r1[5],
MAT(out,1,2) = r1[6]; MAT(out,1,3) = r1[7],
MAT(out,2,0) = r2[4]; MAT(out,2,1) = r2[5],
MAT(out,2,2) = r2[6]; MAT(out,2,3) = r2[7],
MAT(out,3,0) = r3[4]; MAT(out,3,1) = r3[5],
MAT(out,3,2) = r3[6]; MAT(out,3,3) = r3[7];
#undef SWAP_ROWS
#undef MAT
return true;
}
注意:您可以在 mesa 代码库中找到这段代码:mesa-17.3.9/src/mesa/math/m_matrix.c
.
你可以根据这个博客让它更快。
#define SUBP(i,j) input[i][j]
#define SUBQ(i,j) input[i][2+j]
#define SUBR(i,j) input[2+i][j]
#define SUBS(i,j) input[2+i][2+j]
#define OUTP(i,j) output[i][j]
#define OUTQ(i,j) output[i][2+j]
#define OUTR(i,j) output[2+i][j]
#define OUTS(i,j) output[2+i][2+j]
#define INVP(i,j) invP[i][j]
#define INVPQ(i,j) invPQ[i][j]
#define RINVP(i,j) RinvP[i][j]
#define INVPQ(i,j) invPQ[i][j]
#define RINVPQ(i,j) RinvPQ[i][j]
#define INVPQR(i,j) invPQR[i][j]
#define INVS(i,j) invS[i][j]
#define MULTI(MAT1, MAT2, MAT3) \
MAT3(0,0)=MAT1(0,0)*MAT2(0,0) + MAT1(0,1)*MAT2(1,0); \
MAT3(0,1)=MAT1(0,0)*MAT2(0,1) + MAT1(0,1)*MAT2(1,1); \
MAT3(1,0)=MAT1(1,0)*MAT2(0,0) + MAT1(1,1)*MAT2(1,0); \
MAT3(1,1)=MAT1(1,0)*MAT2(0,1) + MAT1(1,1)*MAT2(1,1);
#define INV(MAT1, MAT2) \
_det = 1.0 / (MAT1(0,0) * MAT1(1,1) - MAT1(0,1) * MAT1(1,0)); \
MAT2(0,0) = MAT1(1,1) * _det; \
MAT2(1,1) = MAT1(0,0) * _det; \
MAT2(0,1) = -MAT1(0,1) * _det; \
MAT2(1,0) = -MAT1(1,0) * _det; \
#define SUBTRACT(MAT1, MAT2, MAT3) \
MAT3(0,0)=MAT1(0,0) - MAT2(0,0); \
MAT3(0,1)=MAT1(0,1) - MAT2(0,1); \
MAT3(1,0)=MAT1(1,0) - MAT2(1,0); \
MAT3(1,1)=MAT1(1,1) - MAT2(1,1);
#define NEGATIVE(MAT) \
MAT(0,0)=-MAT(0,0); \
MAT(0,1)=-MAT(0,1); \
MAT(1,0)=-MAT(1,0); \
MAT(1,1)=-MAT(1,1);
void getInvertMatrix(complex<double> input[4][4], complex<double> output[4][4]) {
complex<double> _det;
complex<double> invP[2][2];
complex<double> invPQ[2][2];
complex<double> RinvP[2][2];
complex<double> RinvPQ[2][2];
complex<double> invPQR[2][2];
complex<double> invS[2][2];
INV(SUBP, INVP);
MULTI(SUBR, INVP, RINVP);
MULTI(INVP, SUBQ, INVPQ);
MULTI(RINVP, SUBQ, RINVPQ);
SUBTRACT(SUBS, RINVPQ, INVS);
INV(INVS, OUTS);
NEGATIVE(OUTS);
MULTI(OUTS, RINVP, OUTR);
MULTI(INVPQ, OUTS, OUTQ);
MULTI(INVPQ, OUTR, INVPQR);
SUBTRACT(INVP, INVPQR, OUTP);
}
这不是一个完整的实现,因为P可能不可逆,但您可以将此代码与 MESA 实现结合起来以获得更好的性能。
如果你想计算 4x4 矩阵的逆矩阵,那么我建议使用像OpenGL 数学 (GLM)这样的库:
无论如何,你可以从头开始。以下实现与 的实现类似glm::inverse
,但优化程度不高:
bool InverseMat44( const GLfloat m[16], GLfloat invOut[16] )
{
float inv[16], det;
int i;
inv[0] = m[5] * m[10] * m[15] - m[5] * m[11] * m[14] - m[9] * m[6] * m[15] + m[9] * m[7] * m[14] + m[13] * m[6] * m[11] - m[13] * m[7] * m[10];
inv[4] = -m[4] * m[10] * m[15] + m[4] * m[11] * m[14] + m[8] * m[6] * m[15] - m[8] * m[7] * m[14] - m[12] * m[6] * m[11] + m[12] * m[7] * m[10];
inv[8] = m[4] * m[9] * m[15] - m[4] * m[11] * m[13] - m[8] * m[5] * m[15] + m[8] * m[7] * m[13] + m[12] * m[5] * m[11] - m[12] * m[7] * m[9];
inv[12] = -m[4] * m[9] * m[14] + m[4] * m[10] * m[13] + m[8] * m[5] * m[14] - m[8] * m[6] * m[13] - m[12] * m[5] * m[10] + m[12] * m[6] * m[9];
inv[1] = -m[1] * m[10] * m[15] + m[1] * m[11] * m[14] + m[9] * m[2] * m[15] - m[9] * m[3] * m[14] - m[13] * m[2] * m[11] + m[13] * m[3] * m[10];
inv[5] = m[0] * m[10] * m[15] - m[0] * m[11] * m[14] - m[8] * m[2] * m[15] + m[8] * m[3] * m[14] + m[12] * m[2] * m[11] - m[12] * m[3] * m[10];
inv[9] = -m[0] * m[9] * m[15] + m[0] * m[11] * m[13] + m[8] * m[1] * m[15] - m[8] * m[3] * m[13] - m[12] * m[1] * m[11] + m[12] * m[3] * m[9];
inv[13] = m[0] * m[9] * m[14] - m[0] * m[10] * m[13] - m[8] * m[1] * m[14] + m[8] * m[2] * m[13] + m[12] * m[1] * m[10] - m[12] * m[2] * m[9];
inv[2] = m[1] * m[6] * m[15] - m[1] * m[7] * m[14] - m[5] * m[2] * m[15] + m[5] * m[3] * m[14] + m[13] * m[2] * m[7] - m[13] * m[3] * m[6];
inv[6] = -m[0] * m[6] * m[15] + m[0] * m[7] * m[14] + m[4] * m[2] * m[15] - m[4] * m[3] * m[14] - m[12] * m[2] * m[7] + m[12] * m[3] * m[6];
inv[10] = m[0] * m[5] * m[15] - m[0] * m[7] * m[13] - m[4] * m[1] * m[15] + m[4] * m[3] * m[13] + m[12] * m[1] * m[7] - m[12] * m[3] * m[5];
inv[14] = -m[0] * m[5] * m[14] + m[0] * m[6] * m[13] + m[4] * m[1] * m[14] - m[4] * m[2] * m[13] - m[12] * m[1] * m[6] + m[12] * m[2] * m[5];
inv[3] = -m[1] * m[6] * m[11] + m[1] * m[7] * m[10] + m[5] * m[2] * m[11] - m[5] * m[3] * m[10] - m[9] * m[2] * m[7] + m[9] * m[3] * m[6];
inv[7] = m[0] * m[6] * m[11] - m[0] * m[7] * m[10] - m[4] * m[2] * m[11] + m[4] * m[3] * m[10] + m[8] * m[2] * m[7] - m[8] * m[3] * m[6];
inv[11] = -m[0] * m[5] * m[11] + m[0] * m[7] * m[9] + m[4] * m[1] * m[11] - m[4] * m[3] * m[9] - m[8] * m[1] * m[7] + m[8] * m[3] * m[5];
inv[15] = m[0] * m[5] * m[10] - m[0] * m[6] * m[9] - m[4] * m[1] * m[10] + m[4] * m[2] * m[9] + m[8] * m[1] * m[6] - m[8] * m[2] * m[5];
det = m[0] * inv[0] + m[1] * inv[4] + m[2] * inv[8] + m[3] * inv[12];
if (det == 0) return false;
det = 1.0 / det;
for (i = 0; i < 16; i++)
invOut[i] = inv[i] * det;
return true;
}