2

您能否推荐在任何可用的 R 包中使用四个变量可视化数据的最佳方法。

即,我有两个分类变量(人口(12)和字符(50))和两个连续变量(100 个人的每个字符长度测量的平均值和变异系数(矩阵中的行))。所以它基本上是一个 12x50x100x100 维图。

有什么建议么?

4

2 回答 2

2

我会先一个一个地绘制变量,然后再一起绘制,从整个人口开始,逐步将数据分成不同的组。

# Sample data
n1 <- 6   # Was: 12
n2 <- 5   # Was: 50
n3 <- 10  # Was: 100
d1 <- data.frame(
  population = rep(LETTERS[1:n1], each=n2*n3),
  character = rep(1:n2, each=n3, times=12),
  id = 1:(n1*n2*n3),
  mean = rnorm(n1*n2*n3),
  var  = rchisq(n1*n2*n3, df=5)
)
# Not used, but often useful with ggplot2
library(reshape2)
d2 <- melt(d1, id.vars=c("population","character","id"))

# Look at the first variable
library(lattice)
densityplot( ~ mean, data=d1 )
densityplot( ~ mean, groups=population, data=d1 )
densityplot( ~ mean | population, groups=character, data=d1 )

# Look at the second variable
densityplot( ~ var, data=d1 )
densityplot( ~ var, groups=population, data=d1 )
densityplot( ~ var | population, groups=character, data=d1 )

# Look at both variables
xyplot( mean ~ var, data=d1 )
xyplot( mean ~ var, groups=population, data=d1 )
xyplot( mean ~ var | population, groups=character, data=d1 )

# The plots may be more readable with lines rather than points
xyplot( 
  mean ~ var | population, groups = character, 
  data = d1, 
  panel = panel.superpose, panel.groups = panel.loess
)
于 2012-02-22T13:35:41.687 回答
0

考虑lattice是否要沿数据的一个维度或另一个维度绘制一系列“切片”。为什么不访问http://addictedtor.free.fr/graphiques/ 看看是否有人编写了一些代码来创建您想要的图形?

于 2012-02-22T12:32:50.283 回答