我找不到这样的内置函数,我知道为什么。
y=x'*A*x
可以写成n^2
项的总和A(i,j)*x(i)*x(j)
,其中i
和j
从1
到运行n
(其中A
是一个nxn
矩阵)。A
是对称的:A(i,j) = A(j,i)
对于所有i
和j
。由于对称性,每个项在总和中出现两次,除了i
等于的项j
。所以我们有n*(n+1)/2
不同的术语。每个都有两个浮点乘法,所以一个简单的方法n*(n+1)
总共需要乘法。不难看出,天真的计算x'*A*x
,即计算z=A*x
然后y=x'*z
,也需要n*(n+1)
乘法。但是,有一种更快的方法来总结我们的n*(n+1)/2
不同项:对于每个i
,我们可以分解出x(i)
,这意味着只有n*(n-1)/2+3*n
乘法就足够了。但这并没有真正帮助:计算的运行时间y=x'*A*x
仍然是O(n^2)
。
所以,我认为二次型的计算不能比 快O(n^2)
,而且由于这也可以通过公式来实现y=x'*A*x
,所以特殊的“二次型”函数没有真正的优势。
=== 更新 ===
我用 C 语言编写了函数“quadraticform”,作为 Matlab 扩展:
// y = quadraticform(A, x)
#include "mex.h"
/* Input Arguments */
#define A_in prhs[0]
#define x_in prhs[1]
/* Output Arguments */
#define y_out plhs[0]
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
{
mwSize mA, nA, n, mx, nx;
double *A, *x;
double z, y;
int i, j, k;
if (nrhs != 2) {
mexErrMsgTxt("Two input arguments required.");
} else if (nlhs > 1) {
mexErrMsgTxt("Too many output arguments.");
}
mA = mxGetM(A_in);
nA = mxGetN(A_in);
if (mA != nA)
mexErrMsgTxt("The first input argument must be a quadratic matrix.");
n = mA;
mx = mxGetM(x_in);
nx = mxGetN(x_in);
if (mx != n || nx != 1)
mexErrMsgTxt("The second input argument must be a column vector of proper size.");
A = mxGetPr(A_in);
x = mxGetPr(x_in);
y = 0.0;
k = 0;
for (i = 0; i < n; ++i)
{
z = 0.0;
for (j = 0; j < i; ++j)
z += A[k + j] * x[j];
z *= x[i];
y += A[k + i] * x[i] * x[i] + z + z;
k += n;
}
y_out = mxCreateDoubleScalar(y);
}
我将此代码保存为“quadraticform.c”,并用 Matlab 编译:
mex -O quadraticform.c
我写了一个简单的性能测试来比较这个函数和 x' A x:
clear all; close all; clc;
sizes = int32(logspace(2, 3, 25));
nsizes = length(sizes);
etimes = zeros(nsizes, 2); % Matlab vs. C
nrepeats = 100;
h = waitbar(0, 'Please wait...');
for i = 1 : nrepeats
for j = 1 : nsizes
n = sizes(j);
A = randn(n);
A = (A + A') / 2;
x = randn(n, 1);
if randn > 0
start = tic;
y1 = x' * A * x;
etimes(j, 1) = etimes(j, 1) + toc(start);
start = tic;
y2 = quadraticform(A, x);
etimes(j, 2) = etimes(j, 2) + toc(start);
else
start = tic;
y2 = quadraticform(A, x);
etimes(j, 2) = etimes(j, 2) + toc(start);
start = tic;
y1 = x' * A * x;
etimes(j, 1) = etimes(j, 1) + toc(start);
end;
if abs((y1 - y2) / y2) > 1e-10
error('"x'' * A * x" is not equal to "quadraticform(A, x)"');
end;
waitbar(((i - 1) * nsizes + j) / (nrepeats * nsizes), h);
end;
end;
close(h);
clear A x y;
etimes = etimes / nrepeats;
n = double(sizes);
n2 = n .^ 2.0;
i = nsizes - 2 : nsizes;
n2_1 = mean(etimes(i, 1)) * n2 / mean(n2(i));
n2_2 = mean(etimes(i, 2)) * n2 / mean(n2(i));
figure;
loglog(n, etimes(:, 1), 'r.-', 'LineSmoothing', 'on');
hold on;
loglog(n, etimes(:, 2), 'g.-', 'LineSmoothing', 'on');
loglog(n, n2_1, 'k-', 'LineSmoothing', 'on');
loglog(n, n2_2, 'k-', 'LineSmoothing', 'on');
axis([n(1) n(end) 1e-4 1e-2]);
xlabel('Matrix size, n');
ylabel('Running time (a.u.)');
legend('x'' * A * x', 'quadraticform(A, x)', 'O(n^2)', 'Location', 'NorthWest');
W = 16 / 2.54; H = 12 / 2.54; dpi = 100;
set(gcf, 'PaperPosition', [0, 0, W, H]);
set(gcf, 'PaperSize', [W, H]);
print(gcf, sprintf('-r%d',dpi), '-dpng', 'quadraticformtest.png');
结果非常有趣。两者的运行时间都x'*A*x
收敛quadraticform(A,x)
到O(n^2)
,但前者的因子较小:
