我正在使用人脸检测 AWS 示例项目,我想将人脸检测结果并行发送到连接在串行端口上的 arduino。当人脸检测概率高于阈值时,arduino 将触发执行器。
在 AWS IoT Web 前端服务中,我设法修改(示例项目)greengrassHelloWorld 代码,发布新版本,并将其发布到设备。在 IOT 核心 greengrass 组中,我还添加了链接到先前部署的 Lambda 函数的本地资源 /dev/ttyACM0,提供对本地资源的读写访问权限。
我将不胜感激任何提示或帮助解决问题,我自己花了很多时间试图理解,但我现在被困在这里。
我的尝试失败并出现以下日志条目:
IoTDataPlane.py:115,在主题“$aws/things/deeplens_ft4tbaXlR_eO93TmDr5GvA/infer”上发布消息,负载“人脸检测 lambda 错误:不支持 unicode 字符串,请编码为字节:'prob'”
-Lambda.py:92,使用 Greengrass 消息调用 Lambda 函数“arn:aws:lambda:::function:GGRouter”“人脸检测 lambda 错误:不支持 unicode 字符串,请编码为字节:'prob'”
[致命]-lambda_runtime.py:140,由于异常,无法导入处理程序函数“greengrassHelloWorld.function_handler”:模块“greengrassHelloWorld”没有属性“function_handler”
[2022-02-24T10:35:59.442+01:00][致命]-lambda_runtime.py:380,由于异常无法初始化 Lambda 运行时:模块“greengrassHelloWorld”没有属性“function_handler”
代码本身(粗体**是我在 TOP 和 END 所做的条目):
from threading import Thread, Event
import os
import json
**from time import sleep**
import numpy as np
import awscam
import cv2
import greengrasssdk
**import serial**
**serialcomm = serial.Serial()
**serialcomm.port = '/dev/ttyACM0'
**serialcomm.timeout = 1
**serialcomm.baudrate = 9600**
class LocalDisplay(Thread):
""" Class for facilitating the local display of inference results
(as images). The class is designed to run on its own thread. In
particular the class dumps the inference results into a FIFO
located in the tmp directory (which lambda has access to). The
results can be rendered using mplayer by typing:
mplayer -demuxer lavf -lavfdopts format=mjpeg:probesize=32 /tmp/results.mjpeg
"""
def __init__(self, resolution):
""" resolution - Desired resolution of the project stream """
# Initialize the base class, so that the object can run on its own
# thread.
super(LocalDisplay, self).__init__()
# List of valid resolutions
RESOLUTION = {'1080p' : (1920, 1080), '720p' : (1280, 720), '480p' : (858, 480)}
if resolution not in RESOLUTION:
raise Exception("Invalid resolution")
self.resolution = RESOLUTION[resolution]
# Initialize the default image to be a white canvas. Clients
# will update the image when ready.
self.frame = cv2.imencode('.jpg', 255*np.ones([640, 480, 3]))[1]
self.stop_request = Event()
def run(self):
""" Overridden method that continually dumps images to the desired
FIFO file.
"""
# Path to the FIFO file. The lambda only has permissions to the tmp
# directory. Pointing to a FIFO file in another directory
# will cause the lambda to crash.
result_path = '/tmp/results.mjpeg'
# Create the FIFO file if it doesn't exist.
if not os.path.exists(result_path):
os.mkfifo(result_path)
# This call will block until a consumer is available
with open(result_path, 'wb') as fifo_file:
while not self.stop_request.isSet():
try:
# Write the data to the FIFO file. This call will block
# meaning the code will come to a halt here until a consumer
# is available.
fifo_file.write(self.frame.tobytes())
except IOError:
continue
def set_frame_data(self, frame):
""" Method updates the image data. This currently encodes the
numpy array to jpg but can be modified to support other encodings.
frame - Numpy array containing the image data tof the next frame
in the project stream.
"""
ret, jpeg = cv2.imencode('.jpg', cv2.resize(frame, self.resolution))
if not ret:
raise Exception('Failed to set frame data')
self.frame = jpeg
def join(self):
self.stop_request.set()
def infinite_infer_run():
""" Entry point of the lambda function"""
try:
# This face detection model is implemented as single shot detector (ssd).
model_type = 'ssd'
output_map = {1: 'face'}
# Create an IoT client for sending to messages to the cloud.
client = greengrasssdk.client('iot-data')
iot_topic = '$aws/things/{}/infer'.format(os.environ['AWS_IOT_THING_NAME'])
# Create a local display instance that will dump the image bytes to a FIFO
# file that the image can be rendered locally.
local_display = LocalDisplay('480p')
local_display.start()
# The sample projects come with optimized artifacts, hence only the artifact
# path is required.
model_path = '/opt/awscam/artifacts/mxnet_deploy_ssd_FP16_FUSED.xml'
# Load the model onto the GPU.
client.publish(topic=iot_topic, payload='Loading face detection model')
model = awscam.Model(model_path, {'GPU': 1})
client.publish(topic=iot_topic, payload='Face detection model loaded')
# Set the threshold for detection
detection_threshold = 0.25
# The height and width of the training set images
input_height = 300
input_width = 300
# Do inference until the lambda is killed.
while True:
# Get a frame from the video stream
ret, frame = awscam.getLastFrame()
if not ret:
raise Exception('Failed to get frame from the stream')
# Resize frame to the same size as the training set.
frame_resize = cv2.resize(frame, (input_height, input_width))
# Run the images through the inference engine and parse the results using
# the parser API, note it is possible to get the output of doInference
# and do the parsing manually, but since it is a ssd model,
# a simple API is provided.
parsed_inference_results = model.parseResult(model_type,
model.doInference(frame_resize))
# Compute the scale in order to draw bounding boxes on the full resolution
# image.
yscale = float(frame.shape[0]) / float(input_height)
xscale = float(frame.shape[1]) / float(input_width)
# Dictionary to be filled with labels and probabilities for MQTT
cloud_output = {}
# Get the detected faces and probabilities
for obj in parsed_inference_results[model_type]:
if obj['prob'] > detection_threshold:
# Add bounding boxes to full resolution frame
xmin = int(xscale * obj['xmin'])
ymin = int(yscale * obj['ymin'])
xmax = int(xscale * obj['xmax'])
ymax = int(yscale * obj['ymax'])
# See https://docs.opencv.org/3.4.1/d6/d6e/group__imgproc__draw.html
# for more information about the cv2.rectangle method.
# Method signature: image, point1, point2, color, and tickness.
cv2.rectangle(frame, (xmin, ymin), (xmax, ymax), (255, 165, 20), 10)
# Amount to offset the label/probability text above the bounding box.
text_offset = 15
# See https://docs.opencv.org/3.4.1/d6/d6e/group__imgproc__draw.html
# for more information about the cv2.putText method.
# Method signature: image, text, origin, font face, font scale, color,
# and tickness
cv2.putText(frame, '{:.2f}%'.format(obj['prob'] * 100),
(xmin, ymin-text_offset),
cv2.FONT_HERSHEY_SIMPLEX, 2.5, (255, 165, 20), 6)
# Store label and probability to send to cloud
cloud_output[output_map[obj['label']]] = obj['prob']
# Set the next frame in the local display stream.
local_display.set_frame_data(frame)
# Send results to the cloud
client.publish(topic=iot_topic, payload=json.dumps(cloud_output))
**serialcomm.open()
**sleep(0.1)
**serialcomm.write('prob')
**sleep(0.1)
**serialcomm.close()**
except Exception as ex:
client.publish(topic=iot_topic, payload='Error in face detection lambda: {}'.format(ex))
infinite_infer_run()
```
Thank you for any suggestions.
Pino