0

我正在使用该survminer包尝试为具有 5 个感兴趣的子组的纵向学生级数据集生成生存和危险函数图。

我已经成功创建了一个模型,该模型显示了生存函数,而无需使用ggsurvplot.

ggsurvplot(survfit(Surv(expectedgr, sped) ~ langstatus_new, data=mydata), pvalue=TRUE)

输出示例

但是,我无法为协变量调整这些曲线。我的目标是创建这样的图表。如您所见,这些是根据某些因素变量进行协变量调整的生存曲线。有谁可以得到这样的图表R

4

1 回答 1

1

您希望从 Cox 模型中获取某个感兴趣协变量的某些值的生存概率,同时针对其他协变量进行调整。但是,由于我们没有对 Cox 模型中的生存​​时间分布做出任何假设,因此我们无法直接从中获得生存概率。我们首先必须估计基线风险函数,这通常使用非参数 Breslow 估计器完成。当coxphsurvival包中拟合 Cox 模型时,我们可以通过调用函数来获得这样的概率survfit()。您可以咨询?survfit.coxph了解更多信息。

让我们看看如何通过使用lung数据集来做到这一点。

library(survival)

# select covariates of interest
df <- subset(lung, select = c(time, status, age, sex, ph.karno))

# assess whether there are any missing observations
apply(df, 2, \(x) sum(is.na(x))) # 1 in ph.karno

# listwise delete missing observations
df <- df[complete.cases(df), ]

# Cox model
fit <- coxph(Surv(time, status == 2) ~ age + sex + ph.karno, data = df)

## Note that I ignore the fact that ph.karno does not satisfy the PH assumption.

# specify for which combinations of values of age, sex, and 
# ph.karno we want to derive survival probabilies
ND1 <- with(df, expand.grid(
  age = median(age),
  sex = c(1,2),
  ph.karno = median(ph.karno)
))
ND2 <- with(df, expand.grid(
  age = median(age),
  sex = 1, # males
  ph.karno = round(create_intervals(n_groups = 3L))
))

# Obtain the expected survival times
sfit1 <- survfit(fit, newdata = ND1)
sfit2 <- survfit(fit, newdata = ND2)

该函数背后的代码create_intervals()可以在这篇文章中找到。我只是简单地在函数中替换speed为。ph.karno

输出sfit1包含预期的中位生存时间和相应的 95% 置信区间,用于指定的协变量组合ND1

> sfit1
Call: survfit(formula = fit, newdata = ND)

    n events median 0.95LCL 0.95UCL
1 227    164    283     223     329
2 227    164    371     320     524

times使用该方法的参数获得特定后续时间的生存概率summary()

# survival probabilities at 200 days of follow-up
summary(sfit1, times = 200)

输出再次包含预期生存概率,但现在是在 200 天的随访之后,其中survival1对应于第一行的预期生存概率,即中位数ND1为 的男性和女性患者。ageph.karno

> summary(sfit1, times = 200)
Call: survfit(formula = fit, newdata = ND1)

 time n.risk n.event survival1 survival2
  200    144      71     0.625     0.751

与这两个概率相关的 95% 置信限可以从 中手动提取summary()

sum_sfit <- summary(sfit1, times = 200)
sum_sfit <- t(rbind(sum_sfit$surv, sum_sfit$lower, sum_sfit$upper))
colnames(sum_sfit) <- c("S_hat", "2.5 %", "97.5 %")
# ------------------------------------------------------
> sum_sfit
      S_hat     2.5 %    97.5 %
1 0.6250586 0.5541646 0.7050220
2 0.7513961 0.6842830 0.8250914

如果您想ggplot用来描述 和 中指定的值组合的预期生存概率(以及相应的 95% 置信区间)ND1ND2我们首先需要使data.frames 以适当的格式包含所有信息。

# function which returns the output from a survfit.object
# in an appropriate format, which can be used in a call
# to ggplot()
df_fun <- \(surv_obj, newdata, factor) {
  len <- length(unique(newdata[[factor]]))
  out <- data.frame(
    time = rep(surv_obj[['time']], times = len),
    n.risk = rep(surv_obj[['n.risk']], times = len),
    n.event = rep(surv_obj[['n.event']], times = len),
    surv = stack(data.frame(surv_obj[['surv']]))[, 'values'],
    upper = stack(data.frame(surv_obj[['upper']]))[, 'values'],
    lower = stack(data.frame(surv_obj[['lower']]))[, 'values']
  )
  out[, 7] <- gl(len, length(surv_obj[['time']]))
  names(out)[7] <- 'factor'
  return(out)
}

# data for the first panel (A)
df_leftPanel <- df_fun(surv_obj = sfit1, newdata = ND1, factor = 'sex')

# data for the second panel (B)
df_rightPanel <- df_fun(surv_obj = sfit2, newdata = ND2, factor = 'ph.karno')

现在我们已经定义了data.frames,我们需要定义一个新函数,它允许我们绘制 95% CI。我们为其分配通用名称geom_stepribbon

library(ggplot2)

# Function for geom_stepribbon
geom_stepribbon <- function(
  mapping     = NULL,
  data        = NULL,
  stat        = "identity",
  position    = "identity",
  na.rm       = FALSE,
  show.legend = NA,
  inherit.aes = TRUE, ...) {
  layer(
    data        = data,
    mapping     = mapping,
    stat        = stat,
    geom        = GeomStepribbon,
    position    = position,
    show.legend = show.legend,
    inherit.aes = inherit.aes,
    params      = list(na.rm = na.rm, ... )
  )
}

GeomStepribbon <- ggproto(
  "GeomStepribbon", GeomRibbon,
  extra_params = c("na.rm"),
  draw_group = function(data, panel_scales, coord, na.rm = FALSE) {
    if (na.rm) data <- data[complete.cases(data[c("x", "ymin", "ymax")]), ]
    data   <- rbind(data, data)
    data   <- data[order(data$x), ]
    data$x <- c(data$x[2:nrow(data)], NA)
    data   <- data[complete.cases(data["x"]), ]
    GeomRibbon$draw_group(data, panel_scales, coord, na.rm = FALSE)
  }
)

最后,我们可以绘制 和 的预期生存ND1概率ND2

yl <- 'Expected Survival probability\n'
xl <- '\nTime (days)'

# left panel
my_colours <- c('blue4', 'darkorange')
adj_colour <- \(x) adjustcolor(x, alpha.f = 0.2)
my_colours <- c(
  my_colours, adj_colour(my_colours[1]), adj_colour(my_colours[2])
)
left_panel <- ggplot(df_leftPanel,
                     aes(x = time, colour = factor, fill = factor)) + 
  geom_step(aes(y = surv), size = 0.8) + 
  geom_stepribbon(aes(ymin = lower, ymax = upper), colour = NA) +
  scale_colour_manual(name = 'Sex',
                      values = c('1' = my_colours[1],
                                 '2' = my_colours[2]),
                      labels = c('1' = 'Males',
                                 '2' = 'Females')) +
  scale_fill_manual(name = 'Sex',
                    values = c('1' = my_colours[3],
                               '2' = my_colours[4]),
                    labels = c('1' = 'Males',
                               '2' = 'Females')) +
  ylab(yl) + xlab(xl) +
  theme(axis.text = element_text(size = 12),
        axis.title = element_text(size = 12),
        legend.text = element_text(size = 12),
        legend.title = element_text(size = 12),
        legend.position = 'top')

# right panel
my_colours <- c('blue4', 'darkorange', '#00b0a4')
my_colours <- c(
  my_colours, adj_colour(my_colours[1]),
  adj_colour(my_colours[2]), adj_colour(my_colours[3])
)
right_panel <- ggplot(df_rightPanel,
                      aes(x = time, colour = factor, fill = factor)) + 
  geom_step(aes(y = surv), size = 0.8) +  
  geom_stepribbon(aes(ymin = lower, ymax = upper), colour = NA) +
  scale_colour_manual(name = 'Ph.karno',
                      values = c('1' = my_colours[1],
                                 '2' = my_colours[2],
                                 '3' = my_colours[3]),
                      labels = c('1' = 'Low',
                                 '2' = 'Middle',
                                 '3' = 'High')) +
  scale_fill_manual(name = 'Ph.karno',
                    values = c('1' = my_colours[4],
                               '2' = my_colours[5],
                               '3' = my_colours[6]),
                    labels = c('1' = 'Low',
                               '2' = 'Middle',
                               '3' = 'High')) +
  ylab(yl) + xlab(xl) +
  theme(axis.text = element_text(size = 12),
        axis.title = element_text(size = 12),
        legend.text = element_text(size = 12),
        legend.title = element_text(size = 12),
        legend.position = 'top')

# composite plot
library(ggpubr)
ggarrange(left_panel, right_panel,
          ncol = 2, nrow = 1,
          labels = c('A', 'B'))

输出

在此处输入图像描述

解释

  • age面板 A 显示中位数为 的男性和女性患者的预期生存概率ph.karno
  • age图 B 显示了ph.karnos 为 67(低)、83(中)和 100(高)的三名男性患者的预期生存概率。

这些生存曲线将始终满足 PH 假设,因为它们来自 Cox 模型。

注意:如果您使用 R <4.1.0 的版本,请使用function(x)而不是\(x)

于 2022-01-20T11:14:41.260 回答