它实际上并不是那么微不足道,因为它tf.expand_dims
添加了一个新维度,但不是一个参差不齐的维度,这是事后堆叠两个张量所必需的。一般来说,这是可能的,但比仅仅添加一个新维度要复杂一些。我建议将tf.RaggedTensor.from_value_rowids与tf.RaggedTensor.from_row_splits一起使用:
import tensorflow as tf
t1 = tf.ones([2,10,10], tf.int32)
t2 = tf.ragged.constant([[0,1,2,3,4,5],
[0,1,2,3,4]])
t2_new = tf.ragged.constant([
[[0],[1],[2],[3],[4],[5]],
[[0],[1],[2],[3],[4]]])
flattened_ragged_tensor = t2.flat_values
rows = tf.cast(t2.bounding_shape()[0], dtype=tf.int32)
t2 = tf.RaggedTensor.from_value_rowids(
values=tf.RaggedTensor.from_row_splits(
values=flattened_ragged_tensor,
row_splits=tf.range(tf.shape(flattened_ragged_tensor)[0] + 1)),
value_rowids=tf.concat([tf.tile([i], [t2[i].shape[0]]) for i in tf.range(rows)], axis=0),
nrows=rows)
print(t2.shape)
print(t2_new.shape)
print(tf.ragged.stack([t1, t2]))
print(tf.ragged.stack([t1, t2_new]))
(2, None, None)
(2, None, None)
<tf.RaggedTensor [[[[1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]], [[[0], [1], [2], [3], [4], [5]], [[0], [1], [2], [3], [4]]]]>
<tf.RaggedTensor [[[[1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]], [[[0], [1], [2], [3], [4], [5]], [[0], [1], [2], [3], [4]]]]>