目前我的模型给出了 3 个输出张量。我希望他们两个更合作。我想使用 self.dropout1(hs) 和 self.dropout2(cls_hs) 的组合来通过 self.entity_out 线性层。提到了这个问题 2 张量的形状不同。
当前代码
class NLUModel(nn.Module):
def __init__(self, num_entity, num_intent, num_scenarios):
super(NLUModel, self).__init__()
self.num_entity = num_entity
self.num_intent = num_intent
self.num_scenario = num_scenarios
self.bert = transformers.BertModel.from_pretrained(config.BASE_MODEL)
self.dropout1 = nn.Dropout(0.3)
self.dropout2 = nn.Dropout(0.3)
self.dropout3 = nn.Dropout(0.3)
self.entity_out = nn.Linear(768, self.num_entity)
self.intent_out = nn.Linear(768, self.num_intent)
self.scenario_out = nn.Linear(768, self.num_scenario)
def forward(self, ids, mask, token_type_ids):
out = self.bert(input_ids=ids, attention_mask=mask,
token_type_ids=token_type_ids)
hs, cls_hs = out['last_hidden_state'], out['pooler_output']
entity_hs = self.dropout1(hs)
intent_hs = self.dropout2(cls_hs)
scenario_hs = self.dropout3(cls_hs)
entity_hs = self.entity_out(entity_hs)
intent_hs = self.intent_out(intent_hs)
scenario_hs = self.scenario_out(scenario_hs)
return entity_hs, intent_hs, scenario_hs
必需的
def forward(self, ids, mask, token_type_ids):
out = self.bert(input_ids=ids, attention_mask=mask,
token_type_ids=token_type_ids)
hs, cls_hs = out['last_hidden_state'], out['pooler_output']
entity_hs = self.dropout1(hs)
intent_hs = self.dropout2(cls_hs)
scenario_hs = self.dropout3(cls_hs)
entity_hs = self.entity_out(concat(entity_hs, intent_hs)) # Concatination
intent_hs = self.intent_out(intent_hs)
scenario_hs = self.scenario_out(scenario_hs)
return entity_hs, intent_hs, scenario_hs
假设我成功连接了......反向传播会起作用吗?