我想估计一个 SUR(看似不相关的回归)模型。
我尝试使用systemfit
和它的包装器Zelig
。但我无法理解如何指定要预测的因素(即添加固定效应)和聚类标准误差,就像我们在felm()
.
此外,如果我只是将固定效应变量添加到回归方程中,则会出现以下错误:
Error in LU.dgC(a) : cs_lu(A) failed: near-singular A (or out of memory)
非常感谢你的帮助!
我正在从我的数据中添加一个数据样本:
Y_var1 <- c(0.45, 0.40, 0.30, 0.40, 0.15, 0.35, 0.50, 0.55, 0.10, 0.15, 0.30, 0.10)
Y_var2 <- c(0.40, 0.25, 0.45, 0.30, 0.35, 0.25, 0.15, 0.25, 0.35, 0.30, 0.20, 0.15)
X_var1 <- c(0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0)
X_var2 <- c(0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0)
X_var3 <- c(0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1)
X_var4 <- c(0.18, 0.18, 0.18, 0.20, 0.20, 0.20, 0.22, 0.22, 0.22, 0.24, 0.24, 0.24)
X_var5 <- c(0.08, 0.08, 0.08, 0.06, 0.06, 0.06, 0.04, 0.04, 0.04, 0.02, 0.02, 0.02)
X_var6 <- c(-0.25, -0.25, -0.25, 1.30, 1.30, 1.30, 1.80, 1.80, 1.80, 2.25, 2.25, 2.25)
X_var7 <- c(1000, 1000, 1000, 1500, 1500, 1500, 2000, 2000, 2000, 2500, 2500, 2500)
X_var8 <- c('ABC', 'ABC', 'ABC', 'MNO', 'MNO', 'MNO', 'DEF', 'DEF', 'DEF', 'XYZ', 'XYZ', 'XYZ')
X_var9 <- c(2000, 2010, 2020, 2000, 2010, 2020, 2000, 2010, 2020, 2000, 2010, 2020)
sample_data <- data.frame(Y_var1, Y_var2, X_var1, X_var2, X_var3, X_var4, X_var5, X_var6, X_var7, X_var8, X_var9)
library(systemfit)
formula <- list(mu1 = Y_var1 ~ X_var1*X_var3 + X_var2*X_var3 + X_var4 + X_var5 + X_var6 + log(X_var7),
mu2 = Y_var2 ~ X_var1*X_var3 + X_var2*X_var3 + X_var4 + X_var5 + X_var6 + log(X_var7))
fitsur <- systemfit(formula = formula, data=sample_data, method = "SUR")
fitols <- systemfit(formula = formula, data=sample_data, method = "OLS")
(由于这是一个样本数据集,因此,上述两个回归会给出我上面提到的错误,但在我的实际数据上运行良好。)
但是,我感兴趣的是使用 SUR 估计上述公式,其中X_var8
固定X_var9
效应和标准误差聚集在X_var8
水平上。
如果我们使用felm()
,规范是
felm(mu1 = Y_var1 ~ X_var1*X_var3 + X_var2*X_var3 + X_var4 + X_var5 + X_var6 + log(X_var7) | X_var8 + X_var9 | 0 | X_var8)
但是,由于我的标准误差与方程式相关,因此我需要使用 SUR。
任何帮助将非常感激。谢谢你!