输入 :
tws = ds1.lwe_thickness
print(tws.size)
print(tws.shape)
# tws
# vectorization
stacked1 = tws.stack(space =("latitude", "longitude")) #
stacked
print(stacked1.shape)
# standardization
Y = (stacked1-stacked1.mean())/(stacked1.std())
print(Y)
print(Y.shape)
print(Xt.shape) # precipitation dataset
print(Y.shape) # total water storage dataset
# co-variance between precipitation and total water storage
Cxy = (Xt*Y)/(72)
print(Cxy.shape)
print(Cxy)
print(Cxy.dims)
输出 :
(64800, 72) (72, 64800) (64800, 0) <xarray.DataArray (space: 64800, time: 0)> array([], shape=(64800, 0), dtype=float64) 坐标:*时间(time) datetime64[ns] * space (space) MultiIndex
- 纬度(空间) float64 -90.0 -90.0 -90.0 -90.0 ... 89.0 89.0 89.0 89.0
- 经度(空间) float64 0.0 1.0 2.0 3.0 4.0 ... 356.0 357.0 358.0 359.0('空间','时间')
最初 Xt 矩阵的大小是 64800 72,Y 是 72 64800。这两个矩阵相乘后,大小应该是 64800 64800,但我得到 64800 0。为什么会这样?帮我解决这个问题。基本上我在这里使用 xarray 。
图片附在这里