0

我在 S3 中有一些分区数据,每个分区都有不同数量的列,如下所示。当我读取 pyspark 和 tru 中的数据以打印模式时,我只能读取通常存在于所有分区但不是全部的列。阅读所有列并重命名几列的最佳方法是什么。

aws s3 ls s3://my-bkt/test_data/
            PRE occ_dt=20210426/
            PRE occ_dt=20210428/
            PRE occ_dt=20210429/
            PRE occ_dt=20210430/
            PRE occ_dt=20210503/
            PRE occ_dt=20210504/
            

spark.read.parquet("aws s3 ls s3://my-bkt/test_data/").printSchema()
 |-- map_api__450jshb457: string (nullable = true)
 |-- customer_id: string (nullable = true)
 |-- first_name: string (nullable = true)
 |-- map_api_592yd749dn: string (nullable = true)
 |-- last_name: string (nullable = true)
 |-- map_api_has_join: string (nullable = true)


# When I read partition 20210504
spark.read.parquet("aws s3 ls s3://my-bkt/test_data/occ_dt=20210504/").printSchema()
 |-- map_api__450jshb457: string (nullable = true)
 |-- customer_id: string (nullable = true)
 |-- first_name: string (nullable = true)
 |-- map_api_592yd749dn: string (nullable = true)
 |-- last_name: string (nullable = true)
 |-- map_api_has_join: string (nullable = true)
 |-- cust_activity: string (nullable = true)
 |-- map_api__592rtddvid: string (nullable = true)



# When I read partition 20210503
spark.read.parquet("aws s3 ls s3://my-bkt/test_data/occ_dt=20210503/").printSchema()
 |-- map_api__450jshb457: string (nullable = true)
 |-- customer_id: string (nullable = true)
 |-- first_name: string (nullable = true)
 |-- map_api_592yd749dn: string (nullable = true)
 |-- last_name: string (nullable = true)
 |-- map_api_4js3nnju8572d93: string (nullable = true)
 |-- map_api_58943h64u47v: string (nullable = true)
 |-- map_api__58943h6220dh: string (nullable = true)
 

如上所示,分区 20210503 & 20210504 中的字段比其他分区多。当我读取 s3 存储桶以获取架构时,仅显示所有分区中通用的字段。我希望在读取 s3 loc 时返回所有字段的预期结果如下。

Expected Output : 
spark.read.parquet("aws s3 ls s3://my-bkt/test_data/").printSchema()
|-- map_api__450jshb457: string (nullable = true)
|-- customer_id: string (nullable = true)
|-- first_name: string (nullable = true)
|-- map_api_592yd749dn: string (nullable = true)
|-- last_name: string (nullable = true)
|-- map_api_has_join: string (nullable = true)
|-- map_api_4js3nnju8572d93: string (nullable = true)
|-- map_api_58943h64u47v: string (nullable = true)
|-- map_api__58943h6220dh: string (nullable = true)
|-- cust_activity: string (nullable = true)
|-- map_api__592rtddvid: string (nullable = true)

提前致谢!!

4

1 回答 1

0

在选项中添加了 mergeSchema。

spark.read.option("mergeSchema", "true").parquet("aws s3 ls s3://my-bkt/test_data/").printSchema()
|-- map_api__450jshb457: string (nullable = true)
|-- customer_id: string (nullable = true)
|-- first_name: string (nullable = true)
|-- map_api_592yd749dn: string (nullable = true)
|-- last_name: string (nullable = true)
|-- map_api_has_join: string (nullable = true)
|-- map_api_4js3nnju8572d93: string (nullable = true)
|-- map_api_58943h64u47v: string (nullable = true)
|-- map_api__58943h6220dh: string (nullable = true)
|-- cust_activity: string (nullable = true)
|-- map_api__592rtddvid: string (nullable = true)
于 2021-05-05T23:33:43.803 回答