1

geom_point在同一个情节中绘制了三次,但第二次和第三次geom_point没有出现在图例中,我不明白为什么。我看了很多帖子,但找不到真正有效的解决方案。我的 2 个原始数据框不同,我更愿意保持这种状态而不加入它们。

在此处输入图像描述

十字(或颜色)出现在所有图例项目上,或者第二个geom_point()未在图例中提及。这是我当前的代码:

ggplot () +
  geom_point(data = data_1[data_1$River != "Roya",], aes(x = W_AC, y = BRI_mean_XS, shape = River, col = Type), size = 3) +
  geom_point(data = data_2, aes(x = W_m, y = BRI_norm, color = "Second geom_point "), shape = 4, size = 2.5) + 
  scale_shape_manual(values = c(15, 18, 17, 16)) +
  scale_colour_manual(values = c("blue4", "chocolate1", "darkcyan")) +
  geom_text(data = data_1[data_1$River != "Roya",], aes(x = W_AC, y = BRI_mean_XS, label = Year, vjust = -0.5, hjust = -0.5), show.legend = FALSE, size = 4) +
  scale_x_continuous(name = "aa") +
  scale_y_continuous(name = "bb") + 
  geom_point(data = data_1[data_1$River == "Roya",], aes(x = W_AC, y = BRI_mean_XS), shape = 16, col = "cornflowerblue", size = 3) +
  geom_text(data = data_1[data_1$River == "Roya",], aes(x = W_AC, y = BRI_mean_XS, label = Year, vjust = -0.5, hjust = -0.5), show.legend = F, size = 4) +
  theme_bw()

我还尝试在图中指定颜色和形状,scale_*_manual但图中未使用该形状。例如:scale_shape_manual(values = c(15, 18, 17, 16, 4))4为第二个geom_point。

正如我在其他帖子中所读到的,当在 中指定值时scale_*_manual,它应该出现在图例之后,但在这里似乎混淆了。Type不能在section 或section中显示蓝十字River吗?第三个geom_point()(Roya)也一样,可以在该River部分画一个蓝色圆圈吗?

这是我的 2 个数据框的输入:

数据_1:

structure(list(River = c("Durance", "Durance", "Durance", "Durance",  "Roya", "Var", "Drac", "Drac", "Drac", "Drac", "Var", "Var",  "Mareta", "Mareta", "Mareta", "Mareta", "Var"), Type = c("Under restoration",  "Target", "Under restoration", "Target", "Witness", "Under restoration",  "Under restoration", "Target", "Under restoration", "Target",  "Target", "Under restoration", "Under restoration", "Under restoration",  "Target", "Target", "Under restoration"), Year = c(2017, 2017,  2012, 2012, 2018, 2005, 2011, 2011, 2018, 2018, 2012, 2018, 2005,  2013, 2005, 2013, 2012), BRI_mean_XS = c(0.0028, 0.0017, 0.0033, 
0.0018, 0.009, 0.0097, 0.0182, 0.0026, 0.0032, 0.0035, 0.0053, 
0.0016, 0.005, 0.0041, 0.0058, 0.0082, 0.0037), W_AC = c(296.522411128284, 
411.01376146789, 263.944186046512, 363.288990825688, 88.6420798065296, 
155.868223887175, 41.4430051813472, 138.772532188841, 105.525906735751, 
108.848484848485, 144.78431372549, 314.685764654033, 29.8791208791209, 
52.8, 33.6949152542373, 34.4661016949153, 149.838539375275)), row.names = c(NA, 
-17L), class = c("tbl_df", "tbl", "data.frame"))

数据_2:

structure(list(SITE = c("AIGUES-C", "BUECH-AV", "ARRONDINE",  "ARVAN", "ASSE-BLIEUX", "ASSE-BLIEUX", "ASSE-AV", "ASSE-AM",  "ASSE-AM", "BES-BLEONE", "BES-BLEONE", "BES-DROME", "BES-DROME",  "BLEONE-AM", "BLEONE-AV", "BUECH-AV", "BUECH-AV", "DRANSE-MORZINE",  "DRANSE-MORZINE", "DROME-RECOUBEAU", "DROME-PONTQUART", "DROME-PONTQUART",  "EYGUES-R", "FIER", "GIFFRE", "JABRON", "PETIT-BUECH", "PETIT-BUECH",  "ROUBION", "SASSE", "SASSE", "SASSE", "SEVERAISSE", "SEVERAISSE",  "UBAYE", "VANCON", "VAR", "VENEON", "VERDON", "DRAC LIDAR1",  "DROME LIDAR1", "DROME LIDAR2", "DROME LIDAR3"), W_m = c(180, 
333.593594745271, 56, 78, 102, 58.8, 171.9, 202, 170, 132, 148,  76, 98, 99.9, 171.3, 214, 125, 63, 64, 137, 181, 39, 66, 91,  220, 120, 90, 103, 114, 182, 123, 139, 152, 38, 144, 58, 183,  193, 193,
103.3287640678, 170.959110791, 168.800988262, 133.13237116 ), BRI_norm = c(0.00238417932933424, 0.0019586918252209, 0.00592873427970417, 
0.00496998572378169, 0.00257768461027533, 0.00594823420965329, 
0.00196839869925125, 0.00110647254938539, 0.00129282468469599, 
0.00255415705319677, 0.00189636185539575, 0.00272918083912772, 
0.00362898036424863, 0.00240398604859984, 0.00158558538418367, 
0.00179786294819712, 0.0024557284827885, 0.00910376733031885, 
0.00534776094775883, 0.00392598083437978, 0.00240750522409946, 
0.00514878385829154, 0.00254279813562245, 0.00563806058644668, 
0.00119537585167636, 0.00458318564753459, 0.00595336684669024, 
0.00487895959784154, 0.00292014352039067, 0.00238157929363119, 
0.0025305005154242, 0.00243334672392244, 0.00211201916980846, 
0.007410716639085, 0.0035528851408779, 0.00991898865707844, 0.00350148630982832, 
0.00181290043814611, 0.00277563808425691, 0.00766507891511477, 
0.000968375521552066, 0.000999909065815609, 0.00107669687622853 )), row.names = c(NA, -43L), class = c("tbl_df", "tbl", "data.frame" ))
4

2 回答 2

2

我希望这是向前迈出的有益一步,但不能完全确定它是否完成了您正在寻找的情节。本质上,您应该采取两个进一步的步骤来获得传说中的所有内容并按顺序排列:

  • 您想出现在图例中的任何内容都应该在每个aes()调用中geom_point()
  • 在调用中使用breaks = 参数scale_*_manual()可以让您指定应显示的所有内容及其应显示的顺序。

与这两者一起工作,这可能是您正在寻找的开始:

library(ggplot2)

# the parts of the plot I haven't changed (separated for clarity)

p_base <- ggplot () +
  geom_text(
    data = data_1[data_1$River != "Roya", ],
    aes(
      x = W_AC,
      y = BRI_mean_XS,
      label = Year,
      vjust = -0.5,
      hjust = -0.5
    ),
    show.legend = FALSE,
    size = 4
  ) +
  scale_x_continuous(name = "aa") +
  scale_y_continuous(name = "bb") +
  geom_text(
    data = data_1[data_1$River == "Roya", ],
    aes(
      x = W_AC,
      y = BRI_mean_XS,
      label = Year,
      vjust = -0.5,
      hjust = -0.5
    ),
    show.legend = F,
    size = 4
  ) +
  theme_bw()

# Parts I've changed

p_base + geom_point(
  data = data_1[data_1$River != "Roya",],
  aes(
    x = W_AC,
    y = BRI_mean_XS,
    shape = River,
    col = Type
  ),
  size = 3
) +
  geom_point(
    data = data_2,
    aes(
      x = W_m,
      y = BRI_norm,
      shape = "Second geom_point",
      color = "Second geom_point"
    ),
    size = 2.5
  ) +
  scale_shape_manual(
    breaks = c("Drac", "Durance", "Mareta", "Roya", "Var", "Second geom_point"),
    values = c(15, 18, 17, 16, 10, 4)
  ) +
  scale_colour_manual(
    breaks = c("Target", "Under restoration", "Second geom_point", "Roya"),
    values = c("blue4", "chocolate1", "darkcyan", "cornflowerblue")
  ) +
  geom_point(
    data = data_1[data_1$River == "Roya",],
    aes(
      x = W_AC,
      y = BRI_mean_XS,
      shape = "Roya",
      col = "Roya"
    ),
    size = 3
  )

reprex 包于 2021-04-07 创建 (v2.0.0 )

于 2021-04-07T13:28:28.943 回答
1

我真的不是以下方法的忠实拥护者(使用适当的映射来解决这个问题会更惯用)但是您可以通过根据自己的喜好覆盖color/shape美学RiverType图例来快速解决这个问题:

  1. 通过移动shape内部的美学aes和地图来修改您的第三个点层River
aes(x = W_AC, y = BRI_mean_XS, shape = River)
  1. 调整形状比例,使其Roya由圆圈 (16) 表示:
scale_shape_manual(values = c(15, 18, 17, 16, 16))
  1. 使用以下命令覆盖图例中的美学guides()
 + guides(
    color = guide_legend(
        override.aes = list(shape = c(4, 16, 16))
    ),
    shape = guide_legend(
        override.aes = list(color = c(rep("black", 3), "cornflowerblue", "black"))
    )
  )

结果:

在此处输入图像描述

于 2021-04-07T13:40:55.100 回答