当我在医学图像数据上训练这个网络时 -train -benign -normal -cancer -test -benign -normal -cancer -valid -benign -normal -cancer 训练时出现错误
这是数据加载。import os import torch from torchvision 导入数据集,转换
### TODO: Write data loaders for training, validation, and test sets
## Specify appropriate transforms, and batch_sizes
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
# number of subprocesses to use for data loading
num_workers = 0
# how many samples per batch to load
batch_size = 32
data_transform_train = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
data_transform_test = transforms.Compose([
transforms.Resize(234),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
data_dir = '/content/drive/MyDrive/COVID-19 Database/COVID'
train_dir = os.path.join(data_dir, 'train')
valid_dir = os.path.join(data_dir, 'valid')
test_dir = os.path.join(data_dir, 'test')
train_data = datasets.ImageFolder(train_dir, transform=data_transform_train)
valid_data = datasets.ImageFolder(valid_dir, transform=data_transform_test)
test_data = datasets.ImageFolder(test_dir, transform=data_transform_test)
train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, num_workers=num_workers, shuffle=True)
valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=batch_size, num_workers=num_workers, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_data, batch_size=batch_size, num_workers=num_workers, shuffle=True)
loaders_scratch = {
'train' : train_loader,
'valid' : valid_loader,
'test' : test_loader
}
从头开始在这里制作模型
import torch.nn as nn
import torch.nn.functional as F
# define the CNN architecture
class Net(nn.Module):
### TODO: choose an architecture, and complete the class
def __init__(self):
super(Net, self).__init__()
## Define layers of a CNN
self.conv1 = nn.Conv2d(1, 128, 3) #(224-3)/1+1= 222
self.conv2 = nn.Conv2d(128, 64, 3) #110 after pooling with (2,2) ==>(110-3)/1+1=108
self.conv3 = nn.Conv2d(64, 64, 3) # 54 after pooling with (2,2) ==> 110/2=54 ==>(54-3)/1+1=52
self.conv4 = nn.Conv2d(64, 32, 3) # 26 after pooling with (2,2) ==> 52/2=26 ==>(26-3)/1+1=24
self.conv5 = nn.Conv2d(32, 16, 3) # 12 after pooling with (2,2) ==> 24/2=12 ==> (12-3)/1+1=10
self.conv6 = nn.Conv2d(16, 8, 3) # 5 after pooling with (2,2) ==> 10/2=2
self.pool = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(8 * 5 * 5, 160) #8 is a out_channel(number of filter) of last conv layer and 5 is the output of last conv layer after pooling(200 input to fc1)
self.fc2 = nn.Linear(160, 3) #166 is the output of the fc1 as input to fc2 and 133 output classes
self.dropout25 = nn.Dropout(p=0.5) # 50% dropout of nodes
self.softmax = nn.Softmax(dim = 1)
def forward(self, x):
## Define forward behavior
x = F.relu(self.conv1(x))
x = self.pool(F.relu(self.conv2(x)))
x = self.pool(F.relu(self.conv3(x)))
x = self.pool(F.relu(self.conv4(x)))
x = self.pool(F.relu(self.conv5(x)))
x = self.pool(F.relu(self.conv6(x)))
x = x.view(x.size(0), -1)
x = F.relu(self.fc1(x))
x = self.dropout25(x)
x = self.fc2(x)
x = self.softmax(x)
return x
#-#-# You so NOT have to modify the code below this line. #-#-#
# instantiate the CNN
model_scratch = Net()
use_cuda = torch.cuda.is_available()
# move tensors to GPU if CUDA is available
if use_cuda:
model_scratch.cuda()
print(model_scratch)
在这里我定义损失和优化器
import torch.optim as optim
### TODO: select loss function
criterion_scratch = nn.CrossEntropyLoss()
### TODO: select optimizer
optimizer_scratch = optim.Adam(model_scratch.parameters(), lr = 0.001)
进行培训,我出现在这里的错误
import numpy as np
def train(n_epochs, loaders, model, optimizer, criterion,use_cuda,save_path):
"""returns trained model"""
# initialize tracker for maxi validation loss
valid_loss_min = np.Inf
for epoch in range(1, n_epochs+1):
# initialize variables to monitor training and validation loss
train_loss = 0.0
valid_loss = 0.0
###################
# train the model #
###################
model.train()
for batch_idx, (data, target) in enumerate(loaders['train']):
# move to GPU
if use_cuda:
data, target = data.cuda(), target.cuda()
## find the loss and update the model parameters accordingly
## record the average training loss, using something like
## train_loss = train_loss + ((1 / (batch_idx + 1)) * (loss.data - train_loss))
optimizer.zero_grad()
output = model(data)
loss = criterion(output,target)
loss.backward()
optimizer.step()
train_loss += loss.item()*data.size(0)
######################
# validate the model #
######################
model.eval()
for batch_idx, (data, target) in enumerate(loaders['valid']):
# move to GPU
if use_cuda:
data, target = data.cuda(), target.cuda()
## update the average validation loss
output = model(data)
loss = criterion(output,target)
valid_loss += loss.item()*data.size(0)
train_loss = train_loss/len(loaders['train'].dataset)
valid_loss = valid_loss/len(loaders['valid'].dataset)
# print training/validation statistics
print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format(
epoch,
train_loss,
valid_loss
))
## TODO: save the model if validation loss has decreased
if valid_loss <= valid_loss_min:
print('Validation loss decreased ({:.6f} --> {:.6f}). Saving model ...'.format(
valid_loss_min,
valid_loss))
torch.save(model.state_dict(),save_path)
valid_loss_min = valid_loss
# return trained model
return model
# train the model
model_scratch = train(15, loaders_scratch, model_scratch, optimizer_scratch,
criterion_scratch, use_cuda, 'model_scratch.pt')
# load the model that got the best validation accuracy
model_scratch.load_state_dict(torch.load('model_scratch.pt'))
这是一个错误
RuntimeError Traceback (most recent call last)
<ipython-input-4-63f181ccccc5> in <module>()
66 # train the model
67 model_scratch = train(15, loaders_scratch, model_scratch, optimizer_scratch,
---> 68 criterion_scratch, use_cuda, 'model_scratch.pt')
69
70 # load the model that got the best validation accuracy
5 frames
/usr/local/lib/python3.7/dist-packages/torch/nn/modules/conv.py in _conv_forward(self, input, weight, bias)
394 _pair(0), self.dilation, self.groups)
395 return F.conv2d(input, weight, bias, self.stride,
--> 396 self.padding, self.dilation, self.groups)
397
398 def forward(self, input: Tensor) -> Tensor:
RuntimeError: Given groups=1, weight of size [128, 1, 3, 3], expected input[32, 3, 224, 224] to have 1 channels, but got 3 channels instead