我目前正在尝试按照https://cloud.google.com/ai-platform/prediction/docs/deploying-models#gcloud_1将自定义模型部署到 AI 平台。它基于来自'Pytorch'和 ' torchvision.transform'的预训练模型的组合。目前,我一直低于错误,这恰好与自定义预测的 500MB 限制有关。
错误:(gcloud.beta.ai-platform.versions.create)创建版本失败。检测到错误的模型错误:模型需要的内存超出了允许的范围。请尝试减小模型大小并重新部署。如果您继续遇到错误,请联系支持人员。
安装程序.py
from setuptools import setup
from pathlib import Path
base = Path(__file__).parent
REQUIRED_PACKAGES = [line.strip() for line in open(base/"requirements.txt")]
print(f"\nPackages: {REQUIRED_PACKAGES}\n\n")
# [torch==1.3.0,torchvision==0.4.1, ImageHash==4.2.0
# Pillow==6.2.1,pyvis==0.1.8.2] installs 800mb worth of files
setup(description="Extract features of a image",
author=,
name='test',
version='0.1',
install_requires=REQUIRED_PACKAGES,
project_urls={
'Documentation':'https://cloud.google.com/ai-platform/prediction/docs/custom-prediction-routines#tensorflow',
'Deploy':'https://cloud.google.com/ai-platform/prediction/docs/deploying-models#gcloud_1',
'Ai_platform troubleshooting':'https://cloud.google.com/ai-platform/training/docs/troubleshooting',
'Say Thanks!': 'https://medium.com/searce/deploy-your-own-custom-model-on-gcps-ai-platform-
7e42a5721b43',
'google Torch wheels':"http://storage.googleapis.com/cloud-ai-pytorch/readme.txt",
'Torch & torchvision wheels':"https://download.pytorch.org/whl/torch_stable.html "
},
python_requires='~=3.7',
scripts=['predictor.py', 'preproc.py'])
采取的步骤: 尝试将“torch”和 torchvision 直接添加到 setup.py 文件中的“REQUIRED_PACKAGES”列表中,以便在部署时提供 PyTorch + torchvision 作为要安装的依赖项。我猜,Ai 平台内部为 PyTorch 下载了 +500 MB 的 PyPI 包,这导致我们的模型部署失败。如果我只使用“火炬”部署模型并且它似乎正在工作(当然会因为找不到库“火炬视觉”而引发错误)
文件大小
- pytorch ( torch-1.3.1+cpu-cp37-cp37m-linux_x86_64.whl大约111MB )
- 来自https://download.pytorch.org/whl/torch_stable.html的torchvision ( torchvision-0.4.1+cpu-cp37-cp37m-linux_x86_64.whl大约46MB )并将其存储在 GKS 上。
- 压缩的预测器模型文件(.tar.gz 格式),它是 setup.py ( 5kb )的输出
- 经过训练的 PyTorch 模型(大小44MB)
总的来说,模型依赖项应该小于 250MB,但仍然会出现此错误。还尝试使用 Google 镜像包http://storage.googleapis.com/cloud-ai-pytorch/readme.txt提供的 torch 和 torchvision ,但同样的内存问题仍然存在。人工智能平台对我们来说是相当新的,希望专业人士提供一些意见。
更多信息:
GCP CLI 输入:
我的环境变量:
BUCKET_NAME= “something”
MODEL_DIR=<>
VERSION_NAME='v6'
MODEL_NAME="something_model"
STAGING_BUCKET=$MODEL_DIR<>
# TORCH_PACKAGE=$MODEL_DIR"package/torch-1.3.1+cpu-cp37-cp37m-linux_x86_64.whl"
# TORCHVISION_PACKAGE=$MODEL_DIR"package/torchvision-0.4.1+cpu-cp37-cp37m-linux_x86_64.whl"
TORCH_PACKAGE=<>
TORCHVISION_PACKAGE=<>
CUSTOM_CODE_PATH=$STAGING_BUCKET"imt_ai_predict-0.1.tar.gz"
PREDICTOR_CLASS="predictor.MyPredictor"
REGION=<>
MACHINE_TYPE='mls1-c4-m2'
gcloud beta ai-platform versions create $VERSION_NAME \
--model=$MODEL_NAME \
--origin=$MODEL_DIR \
--runtime-version=2.3 \
--python-version=3.7 \
--machine-type=$MACHINE_TYPE \
--package-uris=$CUSTOM_CODE_PATH,$TORCH_PACKAGE,$TORCHVISION_PACKAGE \
--prediction-class=$PREDICTOR_CLASS \
GCP CLI 输出:
**[1] global**
[2] asia-east1
[3] asia-northeast1
[4] asia-southeast1
[5] australia-southeast1
[6] europe-west1
[7] europe-west2
[8] europe-west3
[9] europe-west4
[10] northamerica-northeast1
[11] us-central1
[12] us-east1
[13] us-east4
[14] us-west1
[15] cancel
Please enter your numeric choice: 1
To make this the default region, run `gcloud config set ai_platform/region global`.
Using endpoint [https://ml.googleapis.com/]
Creating version (this might take a few minutes)......failed.
ERROR: (gcloud.beta.ai-platform.versions.create) Create Version failed. Bad model detected with error: **Model requires more memory than allowed. Please try to decrease the model size and re-deploy. If you continue to experience errors, please contact support.**
我的发现: 发现有人以同样的方式为 PyTorch 软件包苦苦挣扎,并通过在 GCS 上安装火炬轮使其工作(https://medium.com/searce/deploy-your-own-custom-model-on-gcps -ai-平台- 7e42a5721b43)。已经尝试过使用 torch 和 torchvision 的相同方法,但到目前为止还没有运气,等待“cloudml-feedback@google.com cloudml-feedback@google.com”的回复。在 AI 平台上获得基于自定义 torch_torchvision 的自定义预测器的任何帮助都会很棒。