这个问题与这篇文章有关: 如何在 R 中的多个时间序列上应用 dtw 算法?
原始帖子的数据框仅包含 1 个感兴趣的变量:speed.kph.ED
.
#data: 8 observations, 3 cars
file.ID2 <- c("Cars_03", "Cars_03", "Cars_03",
"Cars_03", "Cars_03", "Cars_03", "Cars_03", "Cars_03", "Cars_04",
"Cars_04", "Cars_04", "Cars_04", "Cars_04", "Cars_04", "Cars_04",
"Cars_04", "Cars_05", "Cars_05", "Cars_05", "Cars_05", "Cars_05",
"Cars_05", "Cars_05", "Cars_05")
speed.kph.ED <- c(129.3802848,
129.4022304, 129.424176, 129.4461216, 129.4680672, 129.47904,
129.5009856, 129.5229312, 127.8770112, 127.8221472, 127.7672832,
127.7124192, 127.6575552, 127.6026912, 127.5478272, 127.4929632,
134.1095616, 134.1205344, 134.1315072, 134.1534528, 134.1644256,
134.1753984, 134.1863712, 134.197344)
df <- data.frame(file.ID2, speed.kph.ED)
df
根据公认答案的建议,以下是使用 dtw 计算 3 辆汽车(3 个时间序列)之间距离的程序:
library(dtw)
library(purrr)
library(dplyr)
# Split your data frame into a list by file.ID2
ds <- split(df, df$file.ID2)
ds
# Use expand.grid to make all combinations of your names, file.ID2 and your values
Names <- expand.grid(unique(df$file.ID2), unique(df$file.ID2))
Values <- expand.grid(ds, ds)
# purrr:map_dbl iterates through all row-combinations of Values and returns a vector of doubles
Dist <- map_dbl(1:nrow(Values), ~dtw(x = Values[.x,]$Var1[[1]]$speed.kph.ED, y = Values[.x,]$Var2[[1]]$speed.kph.ED)$distance)
# Bind answer to Names
library(dplyr)
ans <- Names %>%
mutate(distance = Dist)
ans
我想知道如果在计算 3 辆汽车(3 个时间序列)之间的距离时我还想考虑另外两个变量怎么办?
例如,假设我还有另外 2 个变量score.kph.ED
和rating.kph.ED
:
score.kph.ED <- c(1:24)
rating.kph.ED <- c(25:48)
df <- data.frame(file.ID2, speed.kph.ED, score.kph.ED, rating.kph.ED)
df
现在,3 辆车之间的距离不仅基于 计算speed.kph.ED
,而且基于score.kph.ED
和rating.kph.ED
。
如何修改现有代码以实现此目标?
非常感谢你的帮助!