3

我正在使用ml5.js,它是 tensorflowjs 的包装器。我想在浏览器中训练神经网络,下载权重,在 pyTorch 中将它们作为张量处理,然后将它们加载回浏览器的 tensorflowjs 模型中。如何在这些格式之间进行转换tfjs <-> pytorch

浏览器模型具有save()生成三个文件的功能。特定于 ml5.js 的元数据文件 (json)、描述模型架构的拓扑文件 (json) 和二进制权重文件 (bin)。

// Browser
model.save()
// HTTP/Download
model_meta.json   (needed by ml5.js)
model.json        (needed by tfjs)
model.weights.bin (needed by tfjs)
# python backend
import json

with open('model.weights.bin', 'rb') as weights_file:
    with open('model.json', 'rb') as model_file:
        weights = weights_file.read()
        model = json.loads(model_file.read())
        ####
        pytorch_tensor = convert2tensor(weights, model) # whats in this function?
        ####
        # Do some processing in pytorch

        ####
        new_weights_bin = convert2bin(pytorch_tensor, model) # and in this?
        ####

这是在浏览器中生成和加载 3 个文件的示例 javascript 代码。要加载,请在对话框中一次选择所有 3 个文件。如果它们是正确的,弹出窗口将显示一个示例预测。

4

1 回答 1

0

我能够找到一种从 tfjs 转换model.weights.bin为 numpy's 的方法ndarrays。从 numpy 数组转换为 pytorch 是微不足道的,pytorchstate_dict是张量及其名称的字典。

理论

首先,应该了解模型的tfjs表示。model.json描述模型。在 python 中,它可以作为字典来读取。它有以下键:

  1. 模型架构被描述为 key 下的另一个 json/dictionary modelTopology

  2. 它的键下还有一个 json/dictionary,weightsManifest它描述了包含在相应 model.weights.bin文件中的每个权重的类型/形状/位置。顺便说一句,权重清单允许多个.bin文件存储权重。

Tensorflow.js 有一个配套的 python 包tensorflowjs,它带有实用函数,用于在 tf.js 二进制和 numpy 数组格式之间读取写入权重。

每个权重文件被读取为一个“组”。组是带有键的字典列表,namedata引用权重名称和包含权重的 numpy 数组。还有可选的其他键。

group = [{'name': weight_name, 'data': np.ndarray}, ...]   # 1 *.bin file

应用

安装 tensorflowjs。不幸的是,它也会安装 tensorflow。

pip install tensorflowjs

使用这些功能。请注意,为方便起见,我更改了签名。

from typing import Dict, ByteString
import torch
from tensorflowjs.read_weights import decode_weights
from tensorflowjs.write_weights import write_weights

def convert2tensor(weights: ByteString, model: Dict) -> Dict[str, torch.Tensor]:
    manifest = model['weightsManifest']
    # If flatten=False, returns a list of groups equal to the number of .bin files.
    # Use flatten=True to convert to a single group
    group = decode_weights(manifest, weights, flatten=True)
    # Convert dicts in tfjs group format into pytorch's state_dict format:
    # {name: str, data: ndarray} -> {name: tensor}
    state_dict = {d['name']: torch.from_numpy(d['data']) for d in group}
    return state_dict

def convert2bin(state_dict: Dict[str: np.ndarray], model: Dict, directory='./'):
    # convert state_dict to groups (list of 1 group)
    groups = [[{'name': key, 'data': value} for key, value in state_dict.items()]]
    # this library function will write to .bin file[s], but you can read it back
    # or change the function internals my copying them from source
    write_weights(groups, directory, write_manifest=False)
于 2020-12-19T05:54:28.573 回答