我在 C++ 方面相对缺乏经验,并且正在尝试将库编译为 DLL 以在 Unity 中使用。至于生成 DLL 并与之交互,我已经成功地让下面的函数在 Unity 中调用并返回一个虚拟值,不用担心。
我正在努力研究如何与这个Approximate Nearest Neighbor库交互,并且可以使用一些指针。(如果不下载上面链接的源代码并自己看一下,这可能是一个很难定义的问题,但我会尽量让它简单)
在 Unity 中,我有一个三维数组(points[] = float[x,y,z])和一个空间中的查询点(float[x,y,z])。我希望将这些数据输入到类似下面的函数中(我已经从 ann_sample.cpp 修改过 - 原始链接在底部),并将最近的邻居返回到这一点。
我的功能
int myInit(float x, float y, float z, int numPoints, int maxPoints, int nn)
{
int nPts;
ANNpointArray dataPts;
ANNpoint queryPt;
ANNidxArray nnIdx;
ANNdistArray dists;
ANNkd_tree* kdTree;
int dimension = 3;
queryPt = annAllocPt(dimension , x); //This only expects the dimension, and a coord - I assume this is pre-allocation?
dataPts = annAllocPts(maxPoints, dimension); //Again, this does not expect the coordinate (xyz) data, is pre-allocating the array?
nnIdx = new ANNidx[nn]; // more pre-allocating?
dists = new ANNdist[nn]; // more pre-allocating?
nPts = numPoints;
//Should we be populating the actual queryPt and dataPts here?
//at the moment, these are still empty?
kdTree = new ANNkd_tree( // build search structure
dataPts, // the data points
nPts, // number of points
dimension); // dimension of space
kdTree->annkSearch( // search
queryPt, // query point
nn, // number of near neighbors
nnIdx, // nearest neighbors (returned)
dists, // distance (returned)
eps); // error bound
annClose(); // done with ANN
return nnIdx[0]; //this is the nearest neighbor
}
原始函数 (这需要命令行输入 - 即 ann_sample [-d dim] [-max mpts] [-nn k] [-e eps] [-df data] [-qf query])
int main(int argc, char **argv)
{
int nPts; // actual number of data points
ANNpointArray dataPts; // data points
ANNpoint queryPt; // query point
ANNidxArray nnIdx; // near neighbor indices
ANNdistArray dists; // near neighbor distances
ANNkd_tree* kdTree; // search structure
getArgs(argc, argv); // read command-line arguments
queryPt = annAllocPt(dim); // allocate query point
dataPts = annAllocPts(maxPts, dim); // allocate data points
nnIdx = new ANNidx[k]; // allocate near neigh indices
dists = new ANNdist[k]; // allocate near neighbor dists
nPts = 0; // read data points
cout << "Data Points:\n";
while (nPts < maxPts && readPt(*dataIn, dataPts[nPts])) {
printPt(cout, dataPts[nPts]);
nPts++;
}
kdTree = new ANNkd_tree( // build search structure
dataPts, // the data points
nPts, // number of points
dim); // dimension of space
while (readPt(*queryIn, queryPt)) { // read query points
cout << "Query point: "; // echo query point
printPt(cout, queryPt);
kdTree->annkSearch( // search
queryPt, // query point
k, // number of near neighbors
nnIdx, // nearest neighbors (returned)
dists, // distance (returned)
eps); // error bound
cout << "\tNN:\tIndex\tDistance\n";
for (int i = 0; i < k; i++) { // print summary
dists[i] = sqrt(dists[i]); // unsquare distance
cout << "\t" << i << "\t" << nnIdx[i] << "\t" << dists[i] << "\n";
}
}
delete [] nnIdx; // clean things up
delete [] dists;
delete kdTree;
annClose(); // done with ANN
return EXIT_SUCCESS;
}
正如您在我的评论中看到的那样,我无法确定我可能在哪里以及如何实际输入输入数据,也就是说 - 我上面提到的点数组。
通过使用“istream”类,似乎正在使用以下代码填充数据(在参考函数中),但我不明白这是如何工作的,或者我将如何模拟它。
while (nPts < maxPts && readPt(*dataIn, dataPts[nPts])) {
printPt(cout, dataPts[nPts]);
nPts++;
}
...
bool readPt(istream &in, ANNpoint p) // read point (false on EOF)
{
for (int i = 0; i < dim; i++) {
if(!(in >> p[i])) return false;
}
return true;
}