这段代码已经可以达到任意精度。您只需要使用任意精度类型而不是标准Float
/ Double
。为此目的, Haskell 的标准库Rational
将有理数表示为整数对。
ghci> calculateE 100 :: Rational
4299778907798767752801199122242037634663518280784714275131782813346597523870956720660008227544949996496057758175050906671347686438130409774741771022426508339 % 1581800261761765299689817607733333906622304546853925787603270574495213559207286705236295999595873191292435557980122436580528562896896000000000000000000000000
现在的问题是从中获取一系列数字。我不知道标准库中有任何东西可以做到这一点,所以这是一个愚蠢的简单(可能仍然是错误的!)实现:
import Data.List(unfoldr)
import Data.List.NonEmpty(NonEmpty((:|)))
import Data.Ratio
-- first element is integral part (+ sign), rest are positive and < 10 and are digits
-- after the decimal point (for negative numbers, these digits should be seen as having negative value)
longDivision :: Integral a => Ratio a -> NonEmpty a
longDivision x = hi :| unfoldr go (abs lo)
where (hi, lo) = numerator x `quotRem` denominator x
go 0 = Nothing
go lo = Just $ (lo * 10) `quotRem` denominator x
printDigits :: Show a => NonEmpty a -> String
printDigits (x :| xs) = show x ++ "." ++ concatMap show xs
所以
ghci> take 100 $ printDigits $ longDivision $ calculateE 100
"2.71828182845904523536028747135266249775724709369995957496696762772407663035354759457138217852516642"
这个近似值实际上似乎适合小数点后约 160 位数字。