我从输出 2D Multiarray(分段)的 DeepLabV3+ mlmodel 开始。成功添加了一个将其作为输入并输出 GRAYSCALE 图像的层。
现在,我想将此灰度图像作为输入和输出 ARGB,我想让其中一种颜色透明。
如何设置这样的层?
我的python代码:
import coremltools
import coremltools.proto.FeatureTypes_pb2 as ft
coreml_model = coremltools.models.MLModel('DeepLabKP.mlmodel')
spec = coreml_model.get_spec()
spec_layers = getattr(spec,spec.WhichOneof("Type")).layers
# find the current output layer and save it for later reference
last_layer = spec_layers[-1]
# add the post-processing layer
new_layer = spec_layers.add()
new_layer.name = 'image_gray_to_RGB'
# Configure it as an activation layer
new_layer.activation.linear.alpha = 255
new_layer.activation.linear.beta = 0
# Use the original model's output as input to this layer
new_layer.input.append(last_layer.output[0])
# Name the output for later reference when saving the model
new_layer.output.append('image_gray_to_RGB')
# Find the original model's output description
output_description = next(x for x in spec.description.output if x.name==last_layer.output[0])
# Update it to use the new layer as output
output_description.name = new_layer.name
# Function to mark the layer as output
# https://forums.developer.apple.com/thread/81571#241998
def convert_grayscale_image_to_RGB(spec, feature_name, is_bgr=False):
"""
Convert an output multiarray to be represented as an image
This will modify the Model_pb spec passed in.
Example:
model = coremltools.models.MLModel('MyNeuralNetwork.mlmodel')
spec = model.get_spec()
convert_multiarray_output_to_image(spec,'imageOutput',is_bgr=False)
newModel = coremltools.models.MLModel(spec)
newModel.save('MyNeuralNetworkWithImageOutput.mlmodel')
Parameters
----------
spec: Model_pb
The specification containing the output feature to convert
feature_name: str
The name of the multiarray output feature you want to convert
is_bgr: boolean
If multiarray has 3 channels, set to True for RGB pixel order or false for BGR
"""
for output in spec.description.output:
if output.name != feature_name:
continue
if output.type.WhichOneof('Type') != 'imageType':
raise ValueError("%s is not a image type" % output.name)
output.type.imageType.colorSpace = ft.ImageFeatureType.ColorSpace.Value('RGB')
# Mark the new layer as image
convert_grayscale_image_to_RGB(spec, output_description.name, is_bgr=False)
updated_model = coremltools.models.MLModel(spec)
updated_model.author = 'Saran'
updated_model.license = 'MIT'
updated_model.short_description = 'Inherits DeepLab V3+ and adds a layer to turn scores into an image'
updated_model.input_description['image'] = 'Input Image'
updated_model.output_description[output_description.name] = 'RGB Image'
model_file_name = 'DeepLabKP-G2R.mlmodel'
updated_model.save(model_file_name)
虽然模型成功保存没有任何错误,但预测错误如下
result = model.predict({'image': img})
File "/Users/saran/Library/Python/2.7/lib/python/site-packages/coremltools/models/model.py", line 336, in predict
return self.__proxy__.predict(data, useCPUOnly)
RuntimeError: {
NSLocalizedDescription = "Failed to convert output image_gray_to_RGB to image";
NSUnderlyingError = "Error Domain=com.apple.CoreML Code=0 \"Invalid array shape (\n 1,\n 513,\n 513\n) for converting to gray image\" UserInfo={NSLocalizedDescription=Invalid array shape (\n 1,\n 513,\n 513\n) for converting to gray image}";
}
我觉得这与在这一层中如何设置激活有关。但是找不到任何可以尝试不同的方法。
很感谢任何形式的帮助。
我添加的图层产生的灰度图像