0

我已经训练了一个连体神经网络来预测 5 个类的图像相似度(1=不相等,...,5=完全相同)。相似度由余弦相似度测量,其值从 -1 到 1。因此,为了训练模型,我将原始比例转换为这些值,例如“不等于”类 1 到 -1,类 2 到 -0.5 , ... 和“完全一样”的 5 到 1 级。关于预测的结果可以看出,模型的预测具有递增的中位数和递增的相似度(从 1 到 5)。但是比例(-1 到 1)没有被完全使用,因为结果彼此太接近了。另一方面,训练数据的分离非常好,所以我认为这个问题可以解决,但是现在模型之前没有见过的新图像对的泛化效果还不是很好。我认为这是过度拟合的结果,但我不知道我还能做些什么来解决这个问题。这就是为什么我问你是否有人知道我可以做些什么来改善班级的分离。以下是我的训练模型的配置:

  • 训练集是平衡的(~500 Image Pairs / Class)
  • 连体神经网络的 CNN 是针对特定图像的训练 ResNet34
  • 距离函数:余弦相似度
  • 优化器:RMSPROP(lr=0.00001)
  • 时代:500
  • 批量:32
  • 损失函数:SmoothL1Loss
  • 避免过拟合:resize(105,105)、randomRotation([-30,30])、ColorJitter(brightness=[0.7,1])
  • 架构:从 ResNet34 中剪下最后一层并添加一个线性层(见下文)
def cutting_model(model):
    head = nn.Sequential(*list(model.children())[0])
   
    #Select last Layer
    body = nn.Sequential(*list(model.children())[1][:-1])
    model2 = nn.Sequential(head, body)
    
    return model2
    
class SiameseNetwork(nn.Module):
    def __init__(self, model):
        super(SiameseNetwork, self).__init__()
                     
        self.cnn1 = cutting_model(model)#, False, 1)
        self.fc1 = nn.Sequential(nn.Linear(512,100))
    
    def forward_once(self, x):
        
        # Forward pass 
        output = self.cnn1(x)
        output = output.view(output.size()[0], -1)
        output = self.fc1(output)
        return output

    def forward(self, input1, input2):
        
        output1 = self.forward_once(input1)
        output2 = self.forward_once(input2)
        return output1, output2
  • 训练方法:
def train():
    cos = nn.CosineSimilarity(dim=1, eps=1e-6)
    
    for epoch in range(0,Config.train_number_epochs):

        for i, data in enumerate(train_dataloader,0):
            img0, img1 , label = data
            img0, img1 , label = img0.cuda(), img1.cuda() , label.cuda()
            optimizer.zero_grad()
            output1, output2 = net(img0,img1)
            cosine_distance = cos(output1, output2)
            label=label.squeeze()
            loss_function = criterion(cosine_distance, label)
            loss_function.backward()
            optimizer.step()
                
    return net

我目前的连体神经网络:

SiameseNetwork(
  (cnn1): Sequential(
    (0): Sequential(
      (0): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
      (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU(inplace=True)
      (3): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
      (4): Sequential(
        (0): BasicBlock(
          (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
          (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
        (1): BasicBlock(
          (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
          (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
        (2): BasicBlock(
          (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
          (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (5): Sequential(
        (0): BasicBlock(
          (conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
          (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
          (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (downsample): Sequential(
            (0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)
            (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
        )
        (1): BasicBlock(
          (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
          (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
        (2): BasicBlock(
          (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
          (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
        (3): BasicBlock(
          (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
          (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (6): Sequential(
        (0): BasicBlock(
          (conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (downsample): Sequential(
            (0): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False)
            (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
        )
        (1): BasicBlock(
          (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
        (2): BasicBlock(
          (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
        (3): BasicBlock(
          (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
        (4): BasicBlock(
          (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
        (5): BasicBlock(
          (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (7): Sequential(
        (0): BasicBlock(
          (conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
          (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
          (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (downsample): Sequential(
            (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
            (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
        )
        (1): BasicBlock(
          (conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
          (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
        (2): BasicBlock(
          (conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
          (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
    )
    (1): Sequential(
      (0): AdaptiveConcatPool2d(
        (ap): AdaptiveAvgPool2d(output_size=1)
        (mp): AdaptiveMaxPool2d(output_size=1)
      )
      (1): Flatten()
      (2): BatchNorm1d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (3): Dropout(p=0.25, inplace=False)
      (4): Linear(in_features=1024, out_features=512, bias=True)
      (5): ReLU(inplace=True)
      (6): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (7): Dropout(p=0.5, inplace=False)
    )
  )
  (fc1): Sequential(
    (0): Linear(in_features=512, out_features=100, bias=True)
  )
)

我试过了:

  • 不同的优化器(亚当,夏娃)
  • 不同的学习率 (0.00025,0.0001,0.000075,0.000005, 0.0000025, 0.000001)
  • 而不是 CosineSimilarity (范围 -1:1) 我试过余弦距离 (范围 0:2)
  • 不同的时代(200-3000)
  • 不同的批量大小 (32,64)
  • 不同的损失函数(L1Loss、L2Loss、SmoothL1Loss)
  • 额外的数据增强(RandomPerspective、RandomHorizo​​ntalFlip(p=0.2))
  • 不同的 CNN(AlexNet、ResNet101)
  • 切割后的CNN的不同输出尺寸(1,5,10,25,75,100,250,500)

非常感谢您的帮助!

4

0 回答 0