1

library(brms)我有一个适合 brms ( )的多级负二项式模型

fit1 <- brm(TOTAL_VIOLATIONS ~ LN_POP + Source_binary + Source_purchased + (1|TYPE_consolidated) + (1|COUNTY), data = Data, family = negbinomial())

这是数据的样子:

> dput(droplevels(Data[1:20, c(3, 9, 20, 21, 22, 23)]))
structure(list(COUNTY = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 3L), .Label = c("ALAMEDA", 
"ALPINE", "AMADOR"), class = "factor"), TYPE_consolidated = structure(c(9L, 
6L, 3L, 2L, 5L, 7L, 1L, 1L, 4L, 12L, 1L, 1L, 1L, 1L, 8L, 10L, 
6L, 5L, 11L, 2L), .Label = c("City", "County Water District", 
"CSA", "CSD", "IOU", "MHP", "MUD", "MWC", "PA", "Private", "PUD", 
"Special Act District"), class = "factor"), TOTAL_VIOLATIONS = c(0L, 
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 2L, 0L, 0L, 
8L, 0L, 0L), LN_POP = c(3.91202300542815, 6.29710931993394, 6.21260609575152, 
12.7367008965923, 10.9852927228879, 14.1374128813017, 11.9290007521904, 
11.1991321074213, 11.2374881189349, 12.332000202128, 10.2255710517052, 
6.10924758276437, 6.62007320653036, 6.21460809842219, 3.91202300542815, 
3.2188758248682, 4.24849524204936, 7.88231491898027, 8.96839619119826, 
4.91265488573605), Source_binary = structure(c(1L, 1L, 1L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L
), .Label = c("GW", "SW"), class = "factor"), Source_purchased = structure(c(1L, 
1L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 
1L, 1L, 2L), .Label = c("No", "Purchased"), class = "factor")), row.names = c(NA, 
20L), class = "data.frame")

我想探索包含第一个随机效应(TYPE_consolidated)与仅具有第二个随机截距(COUNTY)的相同模型的价值,但我一生无法弄清楚如何icc()使用by_group. 无论有没有这个参数,输出都是完全相同的(见下文)。我有一种感觉,这是因为它是一个 brms 对象,因为根据帮助,这些模型的输出是不同的,但我还没有想出另一种方法来获得它。有谁知道获得单个随机效应的方差比的方法(或者可以看到我做错了什么by_group)?如果没有,是否有标准方法来比较嵌套模型之间的 ICC?如果是这样,也许我可以为我的模型的两个不同版本计算它,然后改为这样做?

> performance::icc(fit1, by_group = TRUE)
# Random Effect Variances and ICC

Conditioned on: all random effects

## Variance Ratio (comparable to ICC)
Ratio: 0.94  CI 95%: [0.80 0.99]

## Variances of Posterior Predicted Distribution
Conditioned on fixed effects:   7.39  CI 95%: [ 2.50  20.03]
Conditioned on rand. effects: 117.57  CI 95%: [59.15 331.86]

## Difference in Variances
Difference: 109.10  CI 95%: [50.23 320.86]

> performance::icc(fit1)
# Random Effect Variances and ICC

Conditioned on: all random effects

## Variance Ratio (comparable to ICC)
Ratio: 0.94  CI 95%: [0.79 0.99]

## Variances of Posterior Predicted Distribution
Conditioned on fixed effects:   7.42  CI 95%: [ 2.48  20.19]
Conditioned on rand. effects: 117.90  CI 95%: [59.53 349.90]

## Difference in Variances
Difference: 109.71  CI 95%: [51.20 340.30]```
4

0 回答 0