我正在尝试解决复杂的非线性系统。问题是有很多根,其中一些是复杂的根。从这些根中,我只需要选择实部在 [0,1] 之间并且没有复杂部分的那个(例如:0.23+0i)。前任:
根1:1.02 + 2i
根2:0.23 + 1.23i
根 3:0.23 + 0i
...
这是我的系统:tau1 和 tau2 是我需要找到的变量。方程是 t1 和 t2,它们取决于 tau1 和 tau2
x0=0 # initial position
xf=30 # final position
x1= 10;
x2 = 20;
tf=20 # final time
tau_wp=[]
def f(tau_wp):
tau1, tau2 = tau_wp
a=(1-tau1)**5*(-10*tau2**3 +15*tau2**4 -6*tau2**5) + (1-tau1)**4*(20*tau2**3 -35*tau2**4 + 15*tau2**5) + (1-tau1)**3*(-10*tau2**3 +20*tau2**4 -10*tau2**5) + (tau2-tau1)**5
b=(1-tau2)**5*(-10*tau1**3 +15*tau1**4 -6*tau1**5) + (1-tau2)**4*(20*tau1**3 -35*tau1**4 + 15*tau1**5) + (1-tau2)**3*(-10*tau1**3 +20*tau1**4 -10*tau1**5)
den=a*b -36*tau2**5*(1-tau2)**5*tau1**5*(1-tau1)**5
p2=(-6*tau1**5*(1-tau1)**5*(xf-x0)*(10*tau2**3-15*tau2**4+6*tau2**5) \
-(xf-x0)*(10*tau1**3-15*tau1**4+6*tau1**5)*a \
+ (x1-x0)*a + (x2-x0)*(6*tau1**5*(1-tau1**5)))
p1=(a*b -36*tau2**5*(1-tau2)**5*tau1**5*(1-tau1)**5)*(-(xf-x0)*(10*tau1**3-15*tau1**4+6*tau1**5) +(x1-x0)) \
+ b*( (xf-x0)*(10*tau2**3 -15*tau2**4 +6*tau2**5)*(6*tau1**5*(1-tau1)**5) \
+ (xf-x0)*(10*tau1**3 -15*tau1**4 +6*tau1**5)*a \
- (x1-x0)*a - (x2-x0)*(6*tau1**5*(1-tau1)**5))
u0=(xf-x0)*(30*tau1**2-60*tau1**3 +30*tau1**4)+p1*tf**5/120*(60*tau1**9-270*tau1**8+480*tau1**7-420*tau1**6+180*tau1**5-30*tau1**4) \
+ p2*tf**5/120 * ((1-tau2)**5*(-30*tau1**2 +60*tau1**3 -30*tau1**4) + (1-tau2)**4*(60*tau1**2 - 140*tau1**3 +75*tau1**4) + \
(1-tau2)**3*(-30*tau1**2 +80*tau1**3 - 50*tau1**4))
u1=(xf-x0)*(30*tau2**2 - 60*tau2**3 + 30*tau2**4)+p1*tf**5/120*((1-tau1)**5*(-30*tau2**2 +60*tau1**3 -30*tau1**4) + \
(1-tau1)**4*(60*tau2**2 - 140*tau2**3 +75*tau2**4) + (1-tau1)**3*(-30*tau2**2 +80*tau2**3 - 50*tau2**4) \
+ 5*tau2**4 -20*tau2**3*tau1 +30*tau2**2*tau1**2 -20*tau2*tau1**3 +5*tau1**4) \
+ p2*tf**5/120*(60*tau2**9-270*tau2**8+480*tau2**7-420*tau2**6+180*tau2**5-30*tau2**4)
## system of nonlinear equations dependent on tau1 and tau2
t1=u0*p1 ### equation 1
t2=u1*p2 ### equation 2
return [t1,t2]
我尝试使用 fsolve,但使用 fsolve 我无法获得复杂的部分。
有没有办法在python中做到这一点?
非常感谢你的帮助!