我是 Python 的新手。
我有这个代码:
def build_base_network(input_shape):
seq = Sequential()
nb_filter = [6, 12]
kernel_size = 3
#convolutional layer 1
seq.add(Convolution2D(nb_filter[0], kernel_size, kernel_size, input_shape=input_shape,
border_mode='valid', dim_ordering='th'))
seq.add(Activation('relu'))
seq.add(MaxPooling2D(pool_size=(2, 2)))
seq.add(Dropout(.25))
#convolutional layer 2
seq.add(Convolution2D(nb_filter[1], kernel_size, kernel_size, border_mode='valid', dim_ordering='th'))
seq.add(Activation('relu'))
seq.add(MaxPooling2D(pool_size=(2, 2), dim_ordering='th'))
seq.add(Dropout(.25))
#flatten
seq.add(Flatten())
seq.add(Dense(128, activation='relu'))
seq.add(Dropout(0.1))
seq.add(Dense(50, activation='relu'))
return seq
"""Next, we feed the image pair, to the base network, which will return the embeddings that is, feature vectors:"""
input_dim = x_train.shape[2:]
img_a = Input(shape=input_dim)
img_b = Input(shape=input_dim)
base_network = build_base_network(input_dim)
feat_vecs_a = base_network(img_a)
feat_vecs_b = base_network(img_b)
我将网络更新为最新的 Keras API 并将其删除Sequential
:
def build_base_network(input_shape):
inputs = Input(shape = input_shape)
nb_filter = [6, 12]
kernel_size = 3
conv1 = Conv2D(nb_filter[0], (kernel_size, kernel_size), activation='relu', padding="valid", data_format='channels_first')(inputs)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
drop1 = Dropout(.25)(pool1)
#convolutional layer 2
conv2 = Conv2D(nb_filter[1], (kernel_size, kernel_size), activation='relu', padding="valid", data_format="channels_first")(drop1)
pool2 = MaxPooling2D(pool_size=(2, 2), data_format="channels_first")(conv2)
drop2 = Dropout(.25)(pool2)
#flatten
dense1 = Dense(128, activation='relu')(drop2)
drop3 = Dropout(0.1)(dense1)
dense2 = Dense(50, activation='relu')(drop3)
return dense2
"""Next, we feed the image pair, to the base network, which will return the embeddings that is, feature vectors:"""
input_dim = x_train.shape[2:]
img_a = Input(shape=input_dim)
img_b = Input(shape=input_dim)
base_network = build_base_network(input_dim)
feat_vecs_a = base_network(img_a)
feat_vecs_b = base_network(img_b)
现在我在这一行收到以下错误feat_vecs_a = base_network(img_a)
:
TypeError:“张量”对象不可调用
我该如何解决这个错误?
我正在使用这个Jupyter notebook实现一个“连体网络” 。