3

我正在尝试使用自定义预测例程将预训练的 pytorch模型部署到 AI Platform。按照此处描述的说明进行操作后,部署失败并出现以下错误:

ERROR: (gcloud.beta.ai-platform.versions.create) Create Version failed. Bad model detected with error: Model requires more memory than allowed. Please try to decrease the model size and re-deploy. If you continue to have error, please contact Cloud ML.

模型文件夹的内容大小为83.89 MB,低于文档中描述的250 MB限制。该文件夹中的唯一文件是模型的检查点文件 (.pth) 和自定义预测例程所需的 tarball。

创建模型的命令:

gcloud beta ai-platform versions create pose_pytorch --model pose --runtime-version 1.15 --python-version 3.5 --origin gs://rcg-models/pytorch_pose_estimation --package-uris gs://rcg-models/pytorch_pose_estimation/my_custom_code-0.1.tar.gz --prediction-class predictor.MyPredictor

将运行时版本更改为1.14会导致相同的错误。我尝试将 --machine-type 参数更改为mls1-c4-m2像 Parth 建议的那样,但我仍然遇到相同的错误。

生成的setup.py文件my_custom_code-0.1.tar.gz如下所示:

setup(
    name='my_custom_code',
    version='0.1',
    scripts=['predictor.py'],
    install_requires=["opencv-python", "torch"]
)

预测器的相关代码片段:

    def __init__(self, model):
        """Stores artifacts for prediction. Only initialized via `from_path`.
        """
        self._model = model
        self._client = storage.Client()

    @classmethod
    def from_path(cls, model_dir):
        """Creates an instance of MyPredictor using the given path.

        This loads artifacts that have been copied from your model directory in
        Cloud Storage. MyPredictor uses them during prediction.

        Args:
            model_dir: The local directory that contains the trained Keras
                model and the pickled preprocessor instance. These are copied
                from the Cloud Storage model directory you provide when you
                deploy a version resource.

        Returns:
            An instance of `MyPredictor`.
        """

        net = PoseEstimationWithMobileNet()
        checkpoint_path = os.path.join(model_dir, "checkpoint_iter_370000.pth")
        checkpoint = torch.load(checkpoint_path, map_location='cpu')
        load_state(net, checkpoint)

        return cls(net)

此外,我在 AI Platform 中为模型启用了日志记录,并得到以下输出:

2019-12-17T09:28:06.208537Z OpenBLAS WARNING - could not determine the L2 cache size on this system, assuming 256k 
2019-12-17T09:28:13.474653Z WARNING:tensorflow:From /usr/local/lib/python3.7/dist-packages/google/cloud/ml/prediction/frameworks/tf_prediction_lib.py:48: The name tf.saved_model.tag_constants.SERVING is deprecated. Please use tf.saved_model.SERVING instead. 
2019-12-17T09:28:13.474680Z {"textPayload":"","insertId":"5df89fad00073e383ced472a","resource":{"type":"cloudml_model_version","labels":{"project_id":"rcg-shopper","region":"","version_id":"lightweight_pose_pytorch","model_id":"pose"}},"timestamp":"2019-12-17T09:28:13.474680Z","logName":"projects/rcg-shopper/logs/ml.googleapis… 
2019-12-17T09:28:13.474807Z WARNING:tensorflow:From /usr/local/lib/python3.7/dist-packages/google/cloud/ml/prediction/frameworks/tf_prediction_lib.py:50: The name tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY is deprecated. Please use tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY instead. 
2019-12-17T09:28:13.474829Z {"textPayload":"","insertId":"5df89fad00073ecd4836d6aa","resource":{"type":"cloudml_model_version","labels":{"project_id":"rcg-shopper","region":"","version_id":"lightweight_pose_pytorch","model_id":"pose"}},"timestamp":"2019-12-17T09:28:13.474829Z","logName":"projects/rcg-shopper/logs/ml.googleapis… 
2019-12-17T09:28:13.474918Z WARNING:tensorflow: 
2019-12-17T09:28:13.474927Z The TensorFlow contrib module will not be included in TensorFlow 2.0. 
2019-12-17T09:28:13.474934Z For more information, please see: 
2019-12-17T09:28:13.474941Z   * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md 
2019-12-17T09:28:13.474951Z   * https://github.com/tensorflow/addons 
2019-12-17T09:28:13.474958Z   * https://github.com/tensorflow/io (for I/O related ops) 
2019-12-17T09:28:13.474964Z If you depend on functionality not listed there, please file an issue. 
2019-12-17T09:28:13.474999Z {"textPayload":"","insertId":"5df89fad00073f778735d7c3","resource":{"type":"cloudml_model_version","labels":{"version_id":"lightweight_pose_pytorch","model_id":"pose","project_id":"rcg-shopper","region":""}},"timestamp":"2019-12-17T09:28:13.474999Z","logName":"projects/rcg-shopper/logs/ml.googleapis… 
2019-12-17T09:28:15.283483Z ERROR:root:Failed to import GA GRPC module. This is OK if the runtime version is 1.x 
2019-12-17T09:28:16.890923Z Copying gs://cml-489210249453-1560169483791188/models/pose/lightweight_pose_pytorch/15316451609316207868/user_code/my_custom_code-0.1.tar.gz... 
2019-12-17T09:28:16.891150Z / [0 files][    0.0 B/  8.4 KiB]                                                 
2019-12-17T09:28:17.007684Z / [1 files][  8.4 KiB/  8.4 KiB]                                                 
2019-12-17T09:28:17.009154Z Operation completed over 1 objects/8.4 KiB.                                       
2019-12-17T09:28:18.953923Z Processing /tmp/custom_code/my_custom_code-0.1.tar.gz 
2019-12-17T09:28:19.808897Z Collecting opencv-python 
2019-12-17T09:28:19.868579Z   Downloading https://files.pythonhosted.org/packages/d8/38/60de02a4c9013b14478a3f681a62e003c7489d207160a4d7df8705a682e7/opencv_python-4.1.2.30-cp37-cp37m-manylinux1_x86_64.whl (28.3MB) 
2019-12-17T09:28:21.537989Z Collecting torch 
2019-12-17T09:28:21.552871Z   Downloading https://files.pythonhosted.org/packages/f9/34/2107f342d4493b7107a600ee16005b2870b5a0a5a165bdf5c5e7168a16a6/torch-1.3.1-cp37-cp37m-manylinux1_x86_64.whl (734.6MB) 
2019-12-17T09:28:52.401619Z Collecting numpy>=1.14.5 
2019-12-17T09:28:52.412714Z   Downloading https://files.pythonhosted.org/packages/9b/af/4fc72f9d38e43b092e91e5b8cb9956d25b2e3ff8c75aed95df5569e4734e/numpy-1.17.4-cp37-cp37m-manylinux1_x86_64.whl (20.0MB) 
2019-12-17T09:28:53.550662Z Building wheels for collected packages: my-custom-code 
2019-12-17T09:28:53.550689Z   Building wheel for my-custom-code (setup.py): started 
2019-12-17T09:28:54.212558Z   Building wheel for my-custom-code (setup.py): finished with status 'done' 
2019-12-17T09:28:54.215365Z   Created wheel for my-custom-code: filename=my_custom_code-0.1-cp37-none-any.whl size=7791 sha256=fd9ecd472a6a24335fd24abe930a4e7d909e04bdc4cf770989143d92e7023f77 
2019-12-17T09:28:54.215482Z   Stored in directory: /tmp/pip-ephem-wheel-cache-i7sb0bmb/wheels/0d/6e/ba/bbee16521304fc5b017fa014665b9cae28da7943275a3e4b89 
2019-12-17T09:28:54.222017Z Successfully built my-custom-code 
2019-12-17T09:28:54.650218Z Installing collected packages: numpy, opencv-python, torch, my-custom-code 

4

3 回答 3

2

这是一个常见问题,我们理解这是一个痛点。请执行以下操作:

  1. torchvision具有torch作为依赖项,默认情况下,它torch从 pypi 中提取。

部署模型时,即使您指向使用自定义 ai 平台torchvision包,它也会这样做,因为torchvision当 PyTorch 团队构建时,它被配置为torch用作依赖项。这个torch来自 pypi 的依赖,提供了一个 720mb 的文件,因为它包含了 GPU 单元

  1. 要解决 #1,您需要从源代码构建 torchvision并告诉torchvision您要从哪里获取torch,您需要将其设置为torch访问网站,因为包较小。使用 Python PEP-0440 直接引用功能重建torchvision二进制文件。在setup.py我们有:torchvision
pytorch_dep = 'torch'
if os.getenv('PYTORCH_VERSION'):
    pytorch_dep += "==" + os.getenv('PYTORCH_VERSION')

更新setup.pytorchvision使用直接引用功能:

requirements = [
     #'numpy',
     #'six',
     #pytorch_dep,
     'torch @ https://download.pytorch.org/whl/cpu/torch-1.4.0%2Bcpu-cp37-cp37m-linux_x86_64.whl'
]

* 我已经为你做了这个*,所以我构建了 3 个你可以使用的轮子文件:

gs://dpe-sandbox/torchvision-0.4.0-cp37-cp37m-linux_x86_64.whl (torch 1.2.0, vision 0.4.0)
gs://dpe-sandbox/torchvision-0.4.2-cp37-cp37m-linux_x86_64.whl (torch 1.2.0, vision 0.4.2)
gs://dpe-sandbox/torchvision-0.5.0-cp37-cp37m-linux_x86_64.whl (torch 1.4.0  vision 0.5.0)

这些torchvision包将从torchtorch站点而不是pypi获取:(示例:https ://download.pytorch.org/whl/cpu/torch-1.4.0%2Bcpu-cp37-cp37m-linux_x86_64.whl )

  1. 在将模型部署到 AI Platform 时更新您的模型setup.py,使其不包含torch也不包含torchvision.

  2. 重新部署模型如下:

PYTORCH_VISION_PACKAGE=gs://dpe-sandbox/torchvision-0.5.0-cp37-cp37m-linux_x86_64.whl

gcloud beta ai-platform versions create {MODEL_VERSION} --model={MODEL_NAME} \
            --origin=gs://{BUCKET}/{GCS_MODEL_DIR} \
            --python-version=3.7 \
            --runtime-version={RUNTIME_VERSION} \
            --machine-type=mls1-c4-m4 \
            --package-uris=gs://{BUCKET}/{GCS_PACKAGE_URI},{PYTORCH_VISION_PACKAGE}\
            --prediction-class={MODEL_CLASS}

您可以更改为PYTORCH_VISION_PACKAGE我在 #2 中提到的任何选项

于 2020-04-02T21:17:04.457 回答
2

我可以通过调整来成功setup.py。基本上install_requires尝试获取 PyPI 托管torch包,它是一个巨大的 GPU 构建轮,并且超出了部署配额。以下setup.py注入从官方 pytorch 索引中获取 CPU 构建的火炬的安装命令。

from setuptools import setup, find_packages
from setuptools.command.install import install as _install

INSTALL_REQUIRES = ['pillow']

CUSTOM_INSTALL_COMMANDS = [
    # Install torch here.
    [
        'python-default', '-m', 'pip', 'install', '--target=/tmp/custom_lib',
        '-b', '/tmp/pip_builds', 'torch==1.4.0+cpu', 'torchvision==0.5.0+cpu',
        '-f', 'https://download.pytorch.org/whl/torch_stable.html'
    ],
]

class Install(_install):
    def run(self):
        import sys
        if sys.platform == 'linux':
            import subprocess
            import logging
            for command in CUSTOM_INSTALL_COMMANDS:
                logging.info('Custom command: ' + ' '.join(command))
                result = subprocess.run(
                    command, check=True, stdout=subprocess.PIPE
                )
                logging.info(result.stdout.decode('utf-8', 'ignore'))
        _install.run(self)

setup(
    name='predictor',
    version='0.1',
    packages=find_packages(),
    install_requires=INSTALL_REQUIRES,
    cmdclass={'install': Install},
)
于 2020-01-18T03:01:29.167 回答
2

经过数小时的旧试验错误后,我得出了与@kyamagu 相同的结论,“install_requires尝试获取 PyPI 托管的 Torch 包,这是一个巨大的 GPU 构建轮子,超出了部署配额。”

但是,他的解决方案对我不起作用。因此,经过更多小时的试验错误(由于缺乏文档和错误的错误),我想出了这个解决方案:

我们需要获取大约 100 MB 的 Pytorch 的 CPU 构建轮子,而不是默认托管 PyPI 的 700 MB GPU 构建的轮子。你可以在这里找到它们:https ://download.pytorch.org/whl/cpu/torch_stable.html

接下来,我们需要将它们放在我们的 gs 存储中,然后将路径作为 --package-uris 的一部分提供,如下所示:

gcloud beta ai-platform versions create v17 \
    --model=newest \
    --origin=gs://bucket \
    --runtime-version=1.15 \
    --python-version=3.7 \
    --package-uris=gs://bucket/predictor-0.1.tar.gz,gs://bucket/torch-1.3.0+cpu-cp37-cp37m-linux_x86_64.whl \
    --prediction-class=predictor.MyPredictor \
    --machine-type=mls1-c4-m4

另外,注意 的顺序package-urispredictor包应该在前,逗号后面不能有空格。

希望这可以帮助。干杯!

于 2020-02-14T19:13:20.977 回答