1

我通过重复测量运行了单向方差分析:

aov <- aov(score ~ group*time + Error(subject/time), data=valueAest)

然而,结果很难解释组差异是来自治疗前,治疗后,还是两者兼而有之?

Error: subject
          Df Sum Sq Mean Sq F value Pr(>F)  
group      1  12.01  12.013   4.424 0.0421 *
Residuals 38 103.17   2.715                 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Error: subject:time
           Df Sum Sq Mean Sq F value Pr(>F)
time        1  0.012  0.0125   0.029  0.866
group:time  1  0.013  0.0125   0.029  0.866
Residuals  38 16.475  0.4336 

所以我决定进行一些事后分析。查看其他人的一些答案,我使用了 multcomp 库:

lme_score = lme(score ~ group, data=valueAest, random = ~1|subject)
anova(lme_score)

require(multcomp)
summary(glht(lme_score, linfct=mcp(group = "Tukey")), test = adjusted(type = "bonferroni"))

但这给了我'ncol(linfct)'不等于'length(coef(model))'的错误。

我也试过:

Mixed_Fitted_Interaction<-emmeans(aov, ~group|time)
Mixed_Fitted_Interaction

# pairwise comparison 
pairs(Mixed_Fitted_Interaction)

这给了我以下结果:

time = recreation1:
 contrast estimate    SE   df t.ratio p.value
 map - VR    -0.75 0.397 49.8 -1.890  0.0646 

time = recreation2:
 contrast estimate    SE   df t.ratio p.value
 map - VR    -0.80 0.397 49.8 -2.016  0.0492  

这在我幼稚的头脑中看起来很有希望,我是否可以得出结论,意义实际上不是来自治疗,而是来自人口差异?

4

0 回答 0