1

如何在以下矩阵图的空面板之一中包含图例?

我在图中对不同的回归线进行了颜色编码。我需要一个基于颜色的图例。

我相信这个答案最接近回答我的问题,但我不知道如何准确地修改我的代码以获得基于不同回归线颜色的图例。

至于代码的背景,我正在尝试研究应用于具有和不具有异常值的多元数据的不同稳健和非稳健回归方法。

library(ggplot2)
library(GGally)
library(MASS)
library(robustbase)

## Just create data -- you can safely SKIP this function.
## 
## Take in number of input variables (k), vector of ranges of k inputs
## ranges = c(min1, max1, min2, max2, ...) (must have 2k elements),
## parameters to create data (must be consistent with the number of
## input variables plus one), parameters are vector of linear
## coefficients (b) and random seed (seed), number of observations
## (n), vector of outliers (outliers)
## 
## Return uncontaminated dataframe and contaminated dataframe
create_data <- function(k, ranges, b, seed = 6, n,
                        outliers = NULL) {
    x <- NULL                           # x: matrix of input variables
    for (i in 1:k) {
    set.seed(seed^i)
        ## x <- cbind(x, runif(n, ranges[2*i-1], ranges[2*i]))
        x <- cbind(x, rnorm(n, ranges[2*i-1], ranges[2*i]))
    }
    set.seed(seed - 2)
    x_aug = cbind(rep(1, n), x)
    y <- x_aug %*% b
    y_mean = mean(y)
    e <- rnorm(n, 0, 0.20 * y_mean)     # rnorm x
    y <- y + e
    df <- data.frame(x = x, y = y)
    len <- length(outliers)
    n_rows <- len %/% (k+1)
    if (!is.null(outliers)) {
        outliers <- matrix(outliers, n_rows, k+1, byrow = TRUE)
        df_contamin <- data.frame(x = rbind(x, outliers[,1:k]), y = c(y, outliers[,k+1]))
    } else {
        df_contamin <- df
    }
    dat <- list(df, df_contamin)
}

# plot different regression models (some are robust) for two types of
# data (one is contaminated with outliers)
plot_models <- function(data, mapping, data2) {
    cb_palette <- c("#999999", "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00", "#CC79A7")
    ## 1.grey, 2.light orange, 3.light blue, 4.green, 5.yellow, 6.blue, 7.red, 8.purple
    plt <- ggplot(data = data, mapping = mapping) +
        geom_point() +
        theme_bw() +
        geom_smooth(method = lm, formula = y ~ x, data = data2, color = cb_palette[3], se = FALSE) +
        geom_smooth(method = lm, formula = y ~ x, color = cb_palette[7], se = FALSE) +
        geom_smooth(method = rlm, formula = y ~ x, color = cb_palette[4], se = FALSE)  +
        geom_smooth(method = lmrob, formula = y ~ x, color = cb_palette[1], se = FALSE)
    plt
}

# trim the upper and right panels of plots
trim_gg <- function(gg) {
    n <- gg$nrow
    gg$nrow <- gg$ncol <- n-1
    v <- 1:n^2
    gg$plots <- gg$plots[v > n & v%%n != 0]
    gg$xAxisLabels <- gg$xAxisLabels[-n]
    gg$yAxisLabels <- gg$yAxisLabels[-1]
    gg
}

dat <- create_data(3, c(1, 10, 1, 10, 1, 10), c(5, 8, 6, 7), 6, 20, c(30, 30, 50, 400))
df <- dat[[1]]
df_contamin <- dat[[2]]

## Note that plot_models is called here
g <- ggpairs(df_contamin, columns = 1:4, lower = list(continuous = wrap(plot_models, data2 = df)), diag = list(continuous = "blankDiag"), upper = list(continuous = "blank")) #, legend = lgd)

gr <- trim_gg(g)
print(gr)

reprex 包(v0.3.0)于 2019 年 10 月 9 日创建

很抱歉代码很长,但很可能只有plot_models函数和ggpairs调用的行需要修改。

我想在图的空白上半部分得到一个图例。可以通过以某种方式调整plot_models函数,将mappingin设置ggpairscolorusingggplot2::aes_string和 using getPlotandputPlot来完成GGally包。但我无法完全理解如何做到这一点。

4

0 回答 0