我对 PyTorch 中执行的数据增强有点困惑。
因为我们处理的是分割任务,所以我们需要数据和掩码进行相同的数据增强,但其中一些是随机的,例如随机旋转。
Kerasrandom seed
保证 data 和 mask 做同样的操作,如下代码所示:
data_gen_args = dict(featurewise_center=True,
featurewise_std_normalization=True,
rotation_range=25,
horizontal_flip=True,
vertical_flip=True)
image_datagen = ImageDataGenerator(**data_gen_args)
mask_datagen = ImageDataGenerator(**data_gen_args)
seed = 1
image_generator = image_datagen.flow(train_data, seed=seed, batch_size=1)
mask_generator = mask_datagen.flow(train_label, seed=seed, batch_size=1)
train_generator = zip(image_generator, mask_generator)
我在Pytorch官方文档中没有找到类似的描述,所以不知道如何保证数据和掩码可以同步处理。
Pytorch 确实提供了这样的功能,但我想将其应用于自定义 Dataloader。
例如:</p>
def __getitem__(self, index):
img = np.zeros((self.im_ht, self.im_wd, channel_size))
mask = np.zeros((self.im_ht, self.im_wd, channel_size))
temp_img = np.load(Image_path + '{:0>4}'.format(self.patient_index[index]) + '.npy')
temp_label = np.load(Label_path + '{:0>4}'.format(self.patient_index[index]) + '.npy')
for i in range(channel_size):
img[:,:,i] = temp_img[self.count[index] + i]
mask[:,:,i] = temp_label[self.count[index] + i]
if self.transforms:
img = np.uint8(img)
mask = np.uint8(mask)
img = self.transforms(img)
mask = self.transforms(mask)
return img, mask
在这种情况下,img 和 mask 会分别进行变换,因为一些随机旋转等操作是随机的,所以 mask 和 image 的对应关系可能会发生变化。换句话说,图像可能已经旋转,但蒙版没有这样做。
编辑 1
我用了augmentations.py中的方法,但是报错了:</p>
Traceback (most recent call last):
File "test_transform.py", line 87, in <module>
for batch_idx, image, mask in enumerate(train_loader):
File "/home/dirk/anaconda3/envs/pytorch/lib/python3.6/site-packages/torch/utils/data/dataloader.py", line 314, in __next__
batch = self.collate_fn([self.dataset[i] for i in indices])
File "/home/dirk/anaconda3/envs/pytorch/lib/python3.6/site-packages/torch/utils/data/dataloader.py", line 314, in <listcomp>
batch = self.collate_fn([self.dataset[i] for i in indices])
File "/home/dirk/anaconda3/envs/pytorch/lib/python3.6/site-packages/torch/utils/data/dataset.py", line 103, in __getitem__
return self.dataset[self.indices[idx]]
File "/home/dirk/home/data/dirk/segmentation_unet_pytorch/data.py", line 164, in __getitem__
img, mask = self.transforms(img, mask)
File "/home/dirk/home/data/dirk/segmentation_unet_pytorch/augmentations.py", line 17, in __call__
img, mask = a(img, mask)
TypeError: __call__() takes 2 positional arguments but 3 were given
这是我的代码__getitem__()
:</p>
data_transforms = {
'train': Compose([
RandomHorizontallyFlip(),
RandomRotate(degree=25),
transforms.ToTensor()
]),
}
train_set = DatasetUnetForTestTransform(fold=args.fold, random_index=args.random_index,transforms=data_transforms['train'])
# __getitem__ in class DatasetUnetForTestTransform
def __getitem__(self, index):
img = np.zeros((self.im_ht, self.im_wd, channel_size))
mask = np.zeros((self.im_ht, self.im_wd, channel_size))
temp_img = np.load(Label_path + '{:0>4}'.format(self.patient_index[index]) + '.npy')
temp_label = np.load(Label_path + '{:0>4}'.format(self.patient_index[index]) + '.npy')
temp_img, temp_label = crop_data_label_from_0(temp_img, temp_label)
for i in range(channel_size):
img[:,:,i] = temp_img[self.count[index] + i]
mask[:,:,i] = temp_label[self.count[index] + i]
if self.transforms:
img = T.ToPILImage()(np.uint8(img))
mask = T.ToPILImage()(np.uint8(mask))
img, mask = self.transforms(img, mask)
img = T.ToTensor()(img).copy()
mask = T.ToTensor()(mask).copy()
return img, mask
编辑 2
我发现在ToTensor之后,相同标签之间的骰子变成255而不是1,如何解决?
# Dice computation
def DSC_computation(label, pred):
pred_sum = pred.sum()
label_sum = label.sum()
inter_sum = np.logical_and(pred, label).sum()
return 2 * float(inter_sum) / (pred_sum + label_sum)
随意询问是否需要更多代码来解释问题。