我已将 Universal_sentence_encoder_large_3 部署到 aws sagemaker。当我尝试使用已部署的模型进行预测时,我得到Failed precondition: Table not initialized.
了一个错误。我在下面包含了我保存模型的部分:
import tensorflow as tf
import tensorflow_hub as hub
import numpy as np
def tfhub_to_savedmodel(model_name, export_path):
model_path = '{}/{}/00000001'.format(export_path, model_name)
tfhub_uri = 'http://tfhub.dev/google/universal-sentence-encoder-large/3'
with tf.Session() as sess:
module = hub.Module(tfhub_uri)
sess.run([tf.global_variables_initializer(), tf.tables_initializer()])
input_params = module.get_input_info_dict()
dtype = input_params['text'].dtype
shape = input_params['text'].get_shape()
# define the model inputs
inputs = {'text': tf.placeholder(dtype, shape, 'text')}
output = module(inputs['text'])
outputs = {
'vector': output,
}
# export the model
tf.saved_model.simple_save(
sess,
model_path,
inputs=inputs,
outputs=outputs)
return model_path
我看到其他人问过这个问题,但没有发布任何解决方案。这似乎是 tensorflow_hub 句子编码器的常见问题