5

在一个示例中工作时,我意识到至少有两种方法可以使用rdkit. 但是以两种方式使用完全相同的属性,我得到不同的向量。我错过了什么吗?

第一种方法:

info = {}
mol = Chem.MolFromSmiles('C/C1=C\\C[C@H]([C+](C)C)CC/C(C)=C/CC1')
fp = AllChem.GetMorganFingerprintAsBitVect(mol, useChirality=True, radius=2, nBits = 124, bitInfo=info)
vector = np.array(fp)
vector
array([0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0,
       0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0,
       0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0,
       0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1])

第二种方法:

morgan_fp_gen = rdFingerprintGenerator.GetMorganGenerator(includeChirality=True, radius=2, fpSize=124)
mol = Chem.MolFromSmiles('C/C1=C\\C[C@H]([C+](C)C)CC/C(C)=C/CC1')
fp = morgan_fp_gen.GetFingerprint(mol)
vector = np.array(fp)
vector
array([0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0,
       1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1,
       1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0])

这显然是不同的,即使在这两种情况下都使用手性。

此外,还有一种方法可以bitInfo使用第二种方法从位向量中获取?

4

1 回答 1

1

默认情况下,摩根生成器使用“计数模拟”:向位向量指纹添加额外位以获得位向量相似性。如果通过传递 useCountSimulation=False 将其关闭,则指纹应该是等效的:

mol = Chem.MolFromSmiles('C/C1=C\\C[C@H]([C+](C)C)CC/C(C)=C/CC1')
fp1 = AllChem.GetMorganFingerprintAsBitVect(mol, useChirality=True, radius=2, nBits=124)
vec1 = np.array(fp1)

morgan_fp_gen = rdFingerprintGenerator.GetMorganGenerator(includeChirality=True, radius=2, fpSize=124, useCountSimulation=False)
fp2 = morgan_fp_gen.GetFingerprint(mol)
vec2 = np.array(fp2)

assert np.all(vec1 == vec2) == True

至于bitInfo我不确定这可以用第二种方法完成,尽管有人可能会纠正我

于 2019-07-23T11:30:17.067 回答