5

我正在对 Pandas 数据框上的股票市场上的一些交易策略进行一些回测,我想设置一个与输入价格相差 1% 的追踪止损。如果股价上涨 5%,追踪止损也会上涨 5%。如果股价下跌,追踪止损不会改变。(https://www.investopedia.com/terms/t/trailingstop.asp

我有这张表,它显示了我的进入信号,如果价格低于追踪止损价格,退出列将显示值为 1,这意味着交易退出。

这是我到目前为止的表:

date           price      entry_signal      
30/06/2018     95              0                
01/07/2018     100             1                
02/07/2018     103             0                
03/07/2018     105             0                
04/07/2018     104.50          0                
05/07/2018     101             0                

我想有一列显示每个日期的追踪止损是多少。当 enter_signal = 1 时,追踪止损首先设置为 2018 年 1 月 7 日价格的 99%,交易在该日期执行。

当价格上涨 y% 时,追踪止损也会上涨 y%。但是,如果价格下跌,追踪止损将不会改变其最后的值。

当价格 <= 追踪止损时,交易退出并且会有一个 exit_signal 为 1...

如果价格也下跌 y%,我目前无法让追踪止损下跌 y%....

期望的表格结果:

date           price      trailing stop loss      entry_signal      exit_signal
30/06/2018     95              NULL                     0                0
01/07/2018     100             99                       1                0
02/07/2018     103             101.97                   0                0
03/07/2018     105             103.95                   0                0
04/07/2018     104.50          103.95                   0                0
05/07/2018     101             103.95                   0                1

我得到的表:

date           price      trailing stop loss      entry_signal      
30/06/2018     95              NULL                     0                
01/07/2018     100             99                       1                
02/07/2018     103             101.97                   0                
03/07/2018     105             103.95                   0                
04/07/2018     104.50          103.455                  0                
05/07/2018     101             99.99                    0                
4

2 回答 2

9

只需取累计最大值的 99% 并与当前价格进行比较:

df = pd.DataFrame({"price":[95,100,103,105,104.5,101]}) #create price array
df['highest'] = df.cummax() #take the cumulative max
df['trailingstop'] = df['highest']*0.99 #subtract 1% of the max
df['exit_signal'] = df['price'] < df['trailingstop'] #generate exit signal


Out[1]: 
   price  highest  trailingstop  exit_signal
0   95.0     95.0         94.05        False
1  100.0    100.0         99.00        False
2  103.0    103.0        101.97        False
3  105.0    105.0        103.95        False
4  104.5    105.0        103.95        False
5  101.0    105.0        103.95         True
于 2020-01-09T19:07:28.910 回答
7

涉及难题cummaxpct_change+ clip_lower+cumprod

s=df.loc[df.entry_signal.cummax().astype(bool),'price'].pct_change().add(1).fillna(1)

df['trailing stop loss']=s.clip_lower(1).cumprod()*99
df['exit_signal']=(df['trailing stop loss']>df['price']).astype(int)
df
Out[114]: 
         date  price  entry_signal  trailing stop loss  exit_signal
0  30/06/2018   95.0             0                 NaN            0
1  01/07/2018  100.0             1               99.00            0
2  02/07/2018  103.0             0              101.97            0
3  03/07/2018  105.0             0              103.95            0
4  04/07/2018  104.5             0              103.95            0
5  05/07/2018  101.0             0              103.95            1
于 2019-07-03T02:10:47.557 回答