0

我正在开发一个射击模拟器项目。我正在使用 IP 摄像机捕捉带有弹孔的屏幕。我面临的问题是只得到新的弹孔。我尝试了 SSIM 方法来实现:

before = cv2.imread('before.png')
after = cv2.imread('after.png')

# Convert images to grayscale
before_gray = cv2.cvtColor(before, cv2.COLOR_BGR2GRAY)
after_gray = cv2.cvtColor(after, cv2.COLOR_BGR2GRAY)

# Compute SSIM between two images
(score, diff) = compare_ssim(before_gray, after_gray, full=True)
# The diff image contains the actual image differences between the two images
# and is represented as a floating point data type in the range [0,1] 
# so we must convert the array to 8-bit unsigned integers in the range
# [0,255] before we can use it with OpenCV
diff = (diff * 255).astype("uint8")

# Threshold the difference image, followed by finding contours to
# obtain the regions of the two input images that differ
thresh = cv2.threshold(diff, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
contours = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours = contours[0] if len(contours) == 2 else contours[1]

contour_sizes = [(cv2.contourArea(contour), contour) for contour in contours]

# The largest contour should be the new detected difference
if len(contour_sizes) > 0:
    largest_contour = max(contour_sizes, key=lambda x: x[0])[1]
    x,y,w,h = cv2.boundingRect(largest_contour)
    cv2.rectangle(before, (x, y), (x + w, y + h), (36,255,12), 2)
    cv2.rectangle(after, (x, y), (x + w, y + h), (36,255,12), 2)

cv2.imshow('before', before)
cv2.imshow('after', after)
cv2.imshow('diff',diff)
cv2.waitKey(0)

我得到了这个结果。我之前和之后的图像是相同的(由于屏幕上有空气而几乎没有运动),但 SSIM 方法总是检测相同图像中的变化。

我的第一张图片是:
在此处输入图像描述

第二张图是:
在此处输入图像描述

我处理后得到的结果是 在此处输入图像描述

还有其他获得新差异的方法吗?我尝试在图像上应用 Canny 方法,但它没有按预期工作。

4

0 回答 0