我在 google colab 上加载我的模型时遇到问题。这是代码:
我附上了下面的代码
我尝试更改 statedict 的名称,但它基本上没有帮助,我正在尝试保存我的模型以供以后使用,但是,这变得非常困难,因为我无法正确保存和加载它。请帮我解决这个问题。在代码部分之后,您还会发现我在下面附加的错误。
这是代码
from zipfile import ZipFile
file_name = 'data.zip'
with ZipFile(file_name, 'r') as zip:
zip.extractall()
from zipfile import ZipFile
file_name = 'results.zip'
with ZipFile(file_name, 'r') as zip:
zip.extractall()
!pip install tensorflow-gpu
from __future__ import print_function
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim as optim
import torch.utils.data
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torchvision.utils as vutils
from torch.autograd import Variable
batchSize = 64
imageSize = 64
transform = transforms.Compose([transforms.Resize(imageSize), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),])
dataset = dset.CIFAR10(root = './data', download = True, transform = transform)
dataloader = torch.utils.data.DataLoader(dataset, batch_size = batchSize, shuffle = True, num_workers = 2)
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
m.weight.data.normal_(0.0, 0.02)
elif classname.find('BatchNorm') != -1:
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
class G(nn.Module):
def __init__(self):
super(G, self).__init__()
self.main = nn.Sequential(
nn.ConvTranspose2d(100, 512, 4, 1, 0, bias = False),
nn.BatchNorm2d(512),
nn.ReLU(True),
nn.ConvTranspose2d(512, 256, 4, 2, 1, bias = False),
nn.BatchNorm2d(256),
nn.ReLU(True),
nn.ConvTranspose2d(256, 128, 4, 2, 1, bias = False),
nn.BatchNorm2d(128),
nn.ReLU(True),
nn.ConvTranspose2d(128, 64, 4, 2, 1, bias = False),
nn.BatchNorm2d(64),
nn.ReLU(True),
nn.ConvTranspose2d(64, 3, 4, 2, 1, bias = False),
nn.Tanh()
)
def forward(self, input):
output = self.main(input)
return output
netG = G()
netG.load_state_dict(torch.load('generator.pth'))
netG.eval()
#netG.apply(weights_init)
class D(nn.Module):
def __init__(self):
super(D, self).__init__()
self.main = nn.Sequential(
nn.Conv2d(3, 64, 4, 2, 1, bias = False),
nn.LeakyReLU(0.2, inplace = True),
nn.Conv2d(64, 128, 4, 2, 1, bias = False),
nn.BatchNorm2d(128),
nn.LeakyReLU(0.2, inplace = True),
nn.Conv2d(128, 256, 4, 2, 1, bias = False),
nn.BatchNorm2d(256),
nn.LeakyReLU(0.2, inplace = True),
nn.Conv2d(256, 512, 4, 2, 1, bias = False),
nn.BatchNorm2d(512),
nn.LeakyReLU(0.2, inplace = True),
nn.Conv2d(512, 1, 4, 1, 0, bias = False),
nn.Sigmoid()
)
def forward(self, input):
output = self.main(input)
return output.view(-1)
netD = D()
netD.load_state_dict(torch.load('discriminator.pth'))
netD.eval()
#netD.apply(weights_init)
criterion = nn.BCELoss()
checkpoint = torch.load('discriminator.pth')
optimizerD = optim.Adam(netD.parameters(), lr = 0.0002, betas = (0.5, 0.999))
optimizerD.load_state_dict(checkpoint['optimizer_state_dict'])
epoch = checkpoint['epoch']
errD = checkpoint['loss']
checkpoint1 = torch.load('genrator.pth')
optimizerG = optim.Adam(netG.parameters(), lr = 0.0002, betas = (0.5, 0.999))
optimizerG.load_state_dict(checkpoint1['optimizer_state_dict'])
errG = checkpoint1['loss']
k = epoch
for j in range(k, 10):
for i, data in enumerate(dataloader, 0):
netD.zero_grad()
real, _ = data
input = Variable(real)
target = Variable(torch.ones(input.size()[0]))
output = netD(input)
errD_real = criterion(output, target)
noise = Variable(torch.randn(input.size()[0], 100, 1, 1))
fake = netG(noise)
target = Variable(torch.zeros(input.size()[0]))
output = netD(fake.detach())
errD_fake = criterion(output, target)
errD = errD_real + errD_fake
errD.backward()
optimizerD.step()
netG.zero_grad()
target = Variable(torch.ones(input.size()[0]))
output = netD(fake)
errG = criterion(output, target)
errG.backward()
optimizerG.step()
print('[%d/%d][%d/%d] Loss_D: %.4f Loss_G: %.4f' % (epoch+1, 10, i+1, len(dataloader), errD.data, errG.data))
if i % 100 == 0:
vutils.save_image(real, '%s/real_samples.png' % "./results", normalize = True)
fake = netG(noise)
vutils.save_image(fake.data, '%s/fake_samples_epoch_%03d.png' % ("./results", epoch+1), normalize = True)
torch.save({
'epoch': epoch,
'model_state_dict': netD.state_dict(),
'optimizer_state_dict': optimizerD.state_dict(),
'loss': errD
}, 'discriminator.pth')
torch.save({
'epoch': epoch,
'model_state_dict': netG.state_dict(),
'optimizer_state_dict': optimizerG.state_dict(),
'loss': errG
}, 'generator.pth')
这是错误
RuntimeError Traceback (most recent call last)
<ipython-input-23-3e55546152c7> in <module>()
26 # Creating the generator
27 netG = G()
---> 28 netG.load_state_dict(torch.load('generator.pth'))
29 netG.eval()
30 #netG.apply(weights_init)
/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py in load_state_dict(self, state_dict, strict)
767 if len(error_msgs) > 0:
768 raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
--> 769 self.__class__.__name__, "\n\t".join(error_msgs)))
770
771 def _named_members(self, get_members_fn, prefix='', recurse=True):
RuntimeError: Error(s) in loading state_dict for G:
Missing key(s) in state_dict: "main.0.weight", "main.1.weight", "main.1.bias", "main.1.running_mean", "main.1.running_var", "main.3.weight", "main.4.weight", "main.4.bias", "main.4.running_mean", "main.4.running_var", "main.6.weight", "main.7.weight", "main.7.bias", "main.7.running_mean", "main.7.running_var", "main.9.weight", "main.10.weight", "main.10.bias", "main.10.running_mean", "main.10.running_var", "main.12.weight".
Unexpected key(s) in state_dict: "epoch", "model_state_dict", "optimizer_state_dict", "loss".