我试图通过在列或行中选择它们来选择熊猫数据框中的 nan 值并将它们提取并保存在 csv 文件中,但我遇到了 TypeError unhashable type: 'set' 我想知道如何修复它以获得结果。
从以下脚本中可以看出,我isnull()在将 inf 值转换为 nan 进行计数后使用函数选择了它们,但在 enc 中,'C'由于 TypeError unhashable type: 'set'. 以下是我的脚本:
import numpy as np
import pandas as pd
#extract the parameters and put them in lists based on id_set
df = pd.read_csv('D:\m22.TXT', header=None)
id_set = df[df.index % 4 == 0].astype('int').values
a = df[df.index % 4 == 1].values
b = df[df.index % 4 == 2].values
c = df[df.index % 4 == 3].values
data = {'A': a[:,0], 'B': b[:,0], 'C': c[:,0] }
main_data = pd.DataFrame(data, columns=['A','B','C'], index = id_set[:,0])
#Mark nan and inf by isnu() function
nan = np.array(main_data.isnull())
inf = np.array(main_data.isnull())
#Make sure to change inf values into nan
main_data = main_data.replace([np.inf, -np.inf], np.nan)
c = main_data.isnull().sum()
print(c)
percent_missing = main_data.isnull().sum() * 100 / len(main_data)
print(percent_missing)
#calculate nan values in percentage in desired column
m = len(main_data) - main_data['A'].count()
print(m)
#Monitor the data
print(main_data)
print (main_data.isnull())
print (main_data.isnull().any(axis=1))
#Select columns has nan(s)
print(main_data[main_data['C'].isnull()])
#Select rows has nan(s) based on id_set
nan_data = main_data[main_data.isnull().any(axis = {'C'})]
print (nan_data)
#write selected part in csv file by id_set
nan_data.to_csv('nan_data.csv', header=None, index=None)
我的数据框如下所示:
A B C
0 -56.343656 nan -418.540483
10 -87.577880 -16.061497 inf
20 nan -15.337254 inf
30 -83.724143 -18.061570 -531.053979
40 -67.462841 nan -431.924830
50 -63.377158 -28.260790 inf
60 nan -22.996095 nan
70 -38.386860 -35.921773 -534.576631
以下所需的输出'C':
'C'
10 inf/nan
20 inf/nan
50 inf/nan
60 nan
下面是我的数据集示例:数据集示例 DL 链接
注意:id_set值不完全写入,例如。000显示为0
希望有人有一个很好的提示来修复它。


