5

我有一个长整数,但它不是以十进制形式存储的,而是作为一组余数存储的。

所以,我没有N数字,而是一组这样的余数:

r_1 = N % 2147483743
r_2 = N % 2147483713
r_3 = N % 2147483693
r_4 = N % 2147483659
r_5 = N % 2147483647
r_6 = N % 2147483629

我知道,N 小于这些素数的乘积,所以中国剩余定理在这里确实有效(http://en.wikipedia.org/wiki/Chinese_remainder_theorem)。

如果我有这 6 个余数,如何N以十进制恢复?任何程序都可以做到这一点(C/C+GMP/C++/perl/java/bc)。

例如,最小 N 可以有这组余数:

r_1 = 1246736738 (% 2147483743)
r_2 = 748761 (% 2147483713)
r_3 = 1829651881 (% 2147483693)
r_4 = 2008266397 (% 2147483659)
r_5 = 748030137 (% 2147483647)
r_6 = 1460049539 (% 2147483629)
4

3 回答 3

6

您链接的文章已经提供了一个建设性的算法来找到解决方案

基本上,对于每一个i你解决整数方程ri*ni + si*(N/ni) = 1where N = n1*n2*n3*...ri和在这里si是未知数。这可以通过扩展欧几里得算法来解决。它非常流行,您可以轻松找到任何语言的示例实现。

然后,假设ei = si*(N/ni),答案是sum(ei*ai)每个i
在那篇文章中描述了所有这些,并附有证据和示例。

于 2011-03-13T02:10:00.790 回答
2

这里是代码(C+GMP),基于 Ben Lynn blynn@github 的这个 LGPL 代码;Garner 算法的斯坦福(通过查询garner mpz_t 使用 RIP Google 代码搜索找到): https ://github.com/blynn/pbc/blob/master/guru/indexcalculus.c (他的 PBC 的一部分(基于配对的加密)图书馆)

用 编译gcc -std=c99 -lgmp。还可以根据您的情况更改尺寸。

#include <gmp.h>
#include <stdlib.h>
#include <stdio.h>
#include <malloc.h>

// Garner's Algorithm.
// See Algorithm 14.71, Handbook of Cryptography.

//    x - result    v residuals    m - primes   t-size of vectors
static void CRT(mpz_t x, mpz_ptr *v, mpz_ptr *m, int t) {
  mpz_t u;
  mpz_t C[t];
  int i, j;

  mpz_init(u);
  for (i=1; i<t; i++) {
    mpz_init(C[i]);
    mpz_set_ui(C[i], 1);
    for (j=0; j<i; j++) {
      mpz_invert(u, m[j], m[i]);
      mpz_mul(C[i], C[i], u);
      mpz_mod(C[i], C[i], m[i]);
    }
  }
  mpz_set(u, v[0]);
  mpz_set(x, u);
  for (i=1; i<t; i++) {
    mpz_sub(u, v[i], x);
    mpz_mul(u, u, C[i]);
    mpz_mod(u, u, m[i]);
    for (j=0; j<i; j++) {
      mpz_mul(u, u, m[j]);
    }
    mpz_add(x, x, u);
  }

  for (i=1; i<t; i++) mpz_clear(C[i]);
  mpz_clear(u);
}

const int size=6; // Change this please

int main()
{
    mpz_t res;
    mpz_ptr t[size], p[size];
    for(int i=0;i<size;i++) { 
        t[i]=(mpz_ptr)malloc(sizeof(mpz_t));
        p[i]=(mpz_ptr)malloc(sizeof(mpz_t));
        mpz_init(p[i]);
        mpz_init(t[i]);
    }
    mpz_init(res);

    for(int i=0;i<size;i++){
        unsigned long rr,pp;
        scanf("%*c%*c%*c = %lu (%% %lu)\n",&rr,&pp);
        printf("Got %lu res on mod %% %lu \n",rr,pp);
        mpz_set_ui(p[i],pp);
        mpz_set_ui(t[i],rr);
    }

    CRT(res,t,p,size);

    gmp_printf("N = %Zd\n", res);
}

示例已解决:

$ ./a.out
r_1 = 1246736738 (% 2147483743)
r_2 = 748761 (% 2147483713)
r_3 = 1829651881 (% 2147483693)
r_4 = 2008266397 (% 2147483659)
r_5 = 748030137 (% 2147483647)
r_6 = 1460049539 (% 2147483629)

Got 1246736738 res on mod % 2147483743 
Got 748761 res on mod % 2147483713 
Got 1829651881 res on mod % 2147483693 
Got 2008266397 res on mod % 2147483659 
Got 748030137 res on mod % 2147483647 
Got 1460049539 res on mod % 2147483629 
N = 703066055325632897509116263399480311

N 是 703066055325632897509116263399480311

于 2011-03-13T05:49:49.197 回答
1

这是基于此 Rosetta Code 任务的 Python 3 实现:https ://rosettacode.org/wiki/Chinese_remainder_theorem

from functools import reduce
from operator import mul    

def chinese_remainder(n, a):
    """
    Chinese Remainder Theorem.

    :param n: list of pairwise relatively prime integers
    :param a: remainders when x is divided by n
    """
    s = 0
    prod = reduce(mul, n)
    for n_i, a_i in zip(n, a):
        p = prod // n_i
        s += a_i * inverse(p, n_i) * p
    return s % prod    

def inverse(a, b):
    """
    Modular multiplicative inverse.
    """
    b0 = b
    x0, x1 = 0, 1
    if b == 1:
        return 1
    while a > 1:
        q = a // b
        a, b = b, a % b
        x0, x1 = x1 - q * x0, x0
    if x1 < 0:
        x1 += b0
    return x1    

n = [2147483743, 2147483713, 2147483693, 2147483659, 2147483647, 2147483629]
a = [1246736738, 748761, 1829651881, 2008266397, 748030137, 1460049539]

print(chinese_remainder(n, a))  # 703066055325632897509116263399480311

Python 的一个很好的特性是它自然地支持任意大的整数。

于 2019-04-21T07:57:01.317 回答