首先让我们生成一些数据并为每个组获取一个标签:
library(tidyverse)
df <-
rnorm(1000) %>%
as_tibble() %>%
mutate(grp = floor(1 + (row_number() - 1) / 200))
> df
# A tibble: 1,000 x 2
value grp
<dbl> <dbl>
1 -1.06 1
2 0.668 1
3 -2.02 1
4 1.21 1
...
1000 0.78 5
这会创建 1000 个随机 N(0,1) 变量,将其转换为数据框,然后为每组 200 个添加一个递增的数字标签。
df %>%
group_by(grp) %>%
summarize(grp_sum = sum(value))
# A tibble: 5 x 2
grp grp_sum
<dbl> <dbl>
1 1 9.63
2 2 -12.8
3 3 -18.8
4 4 -8.93
5 5 -25.9
然后我们只需要对第二列进行分组操作并对值求和。您可以使用 pull() 操作来获取结果向量:
df %>%
group_by(grp) %>%
summarize(grp_sum = sum(value)) %>%
pull(grp_sum)
[1] 9.62529 -12.75193 -18.81967 -8.93466 -25.90523