1

我不确定这是否更像是一个编程或统计(即我缺乏理解)问题。

我有一个泊松混合模型,我想用它来比较不同时间段内各组的平均计数。

mod <- glmer(Y ~ TX_GROUP * time + (1|ID), data = dat, family = poisson)
mod_em <- emmeans(mod, c("TX_GROUP","time"), type = "response")

 TX_GROUP time     rate        SE  df asymp.LCL asymp.UCL
 0        1    5.743158 0.4566671 Inf  4.914366  6.711723
 1        1    5.529303 0.4639790 Inf  4.690766  6.517741
 0        2    2.444541 0.2981097 Inf  1.924837  3.104564
 1        2    1.467247 0.2307103 Inf  1.078103  1.996855
 0        3    4.570218 0.4121428 Inf  3.829795  5.453790
 1        3    1.676827 0.2472920 Inf  1.255904  2.238826

现在,我想估计每个组的组合时间段 (2 + 3) 的边际计数。这不是对记录计数的总和取幂的简单案例:

contrast(mod_em, list(`2 + 3` = c(0, 0, 1, 0, 1, 0)))
contrast(mod_em, list(`2 + 3` = c(0, 0, 0, 1, 0, 1)))

如果我尝试该值不接近匹配组合组的简单平均值。

4

3 回答 3

3

首先,我建议您将两个对比放在一个列表中,例如,

contr = list(`2+2|0` = c(0, 0, 1, 0, 1, 0),
             `2+3|1` = c(0, 0, 0, 1, 0, 1))

您必须决定何时要进行反向转换。请参阅有关转换的小插图,并注意有关“时间就是一切”的讨论。两个基本选项是:

一种选择:获取日志计数的边际均值,然后进行反向变换:

mod_con = update(contrast(mod_emm, contr), tran = "log")
summary(mod_con, type = "response")

[update之所以需要调用,是因为contrast除特殊情况外,它会去除转换,因为它并不总是知道分配给任意线性函数的比例。例如,两个平方根的差异不在平方根尺度上。]

第二种选择:对预测进行反向转换,然后对它们求和:

mod_emmr = regrid(mod_emm) 
contrast(mod_emmr, contr)

这些结果之间的区别与几何平均值(选项 1)和算术平均值(选项 2)之间的区别相同。我怀疑它们中的任何一个都会产生与原始边际平均数相同的结果,因为它们是基于您的模型的预测。就个人而言,我认为第一个选项是更好的选择,因为 sum 是线性运算,并且模型在对数尺度上是线性的。

附录

其实还有第三种选择,就是创建一个分组变量。我将用pigs数据集进行说明。

> pigs.lm <- lm(log(conc) ~ source + factor(percent), data = pigs)

以下是 EMM percent

> emmeans(pigs.lm, "percent")
 percent   emmean         SE df lower.CL upper.CL
       9 3.445307 0.04088810 23 3.360723 3.529890
      12 3.624861 0.03837600 23 3.545475 3.704248
      15 3.662706 0.04372996 23 3.572244 3.753168
      18 3.745156 0.05296030 23 3.635599 3.854713

Results are averaged over the levels of: source 
Results are given on the log (not the response) scale. 
Confidence level used: 0.95 

现在让我们创建一个分组因子group

> pigs.emm = add_grouping(ref_grid(pigs.lm), "group", "percent", c("1&2","1&2","3&4","3&4"))
> str(pigs.emm)
'emmGrid' object with variables:
    source = fish, soy, skim
    percent =  9, 12, 15, 18
    group = 1&2, 3&4
Nesting structure:  percent %in% group
Transformation: “log” 

现在获取 EMMgroup并注意它们只是各个级别的平均值:

> emmeans(pigs.emm, "group")
 group   emmean         SE df lower.CL upper.CL
 1&2   3.535084 0.02803816 23 3.477083 3.593085
 3&4   3.703931 0.03414907 23 3.633288 3.774574

Results are averaged over the levels of: source, percent 
Results are given on the log (not the response) scale. 
Confidence level used: 0.95 

以下是响应量表的摘要:

> summary(.Last.value, type = "response")
 group response       SE df lower.CL upper.CL
 1&2   34.29790 0.961650 23 32.36517 36.34605
 3&4   40.60662 1.386678 23 37.83703 43.57893

Results are averaged over the levels of: source, percent 
Confidence level used: 0.95 
Intervals are back-transformed from the log scale

这些是平均值而不是总和,但除此之外它有效,并且转换不会像在contrast()

于 2018-06-19T01:59:06.797 回答
2

要使用包中的示例数据,这似乎很好,尽管我会改用公式中的分组。

> warp.lm <- lm(breaks ~ wool*tension, data = warpbreaks)
> warp.emm <- emmeans(warp.lm, c("tension", "wool"))
> warp.emm
 tension wool   emmean       SE df lower.CL upper.CL
 L       A    44.55556 3.646761 48 37.22325 51.88786
 M       A    24.00000 3.646761 48 16.66769 31.33231
 H       A    24.55556 3.646761 48 17.22325 31.88786
 L       B    28.22222 3.646761 48 20.88992 35.55453
 M       B    28.77778 3.646761 48 21.44547 36.11008
 H       B    18.77778 3.646761 48 11.44547 26.11008

Confidence level used: 0.95 

L 和 M 之和应为 A 的 44 + 24 ~ 68 和 B 的 28 + 28 ~ 56。

> contrast(warp.emm, list(A.LM = c(1, 1, 0, 0, 0, 0),
+                         B.LM = c(0, 0, 0, 1, 1, 0)))
 contrast estimate       SE df t.ratio p.value
 A.LM     68.55556 5.157299 48  13.293  <.0001
 B.LM     57.00000 5.157299 48  11.052  <.0001

虽然我会在公式中使用分组。

> warp.em2 <- emmeans(warp.lm, ~tension|wool)
> contrast(warp.em2, list(LM = c(1, 1, 0)))
wool = A:
 contrast estimate       SE df t.ratio p.value
 LM       68.55556 5.157299 48  13.293  <.0001

wool = B:
 contrast estimate       SE df t.ratio p.value
 LM       57.00000 5.157299 48  11.052  <.0001
于 2018-06-18T03:30:22.947 回答
0

谢谢。第二种方法对我有用,但不是第一种(这似乎更直观) - 它似乎没有给我反向转换的值:

(mod_em_inj <- emmeans(mod_inj, c("TX_GROUP","time"), type = "response"))

 TX_GROUP time     rate        SE  df asymp.LCL asymp.UCL
 0        1    5.743158 0.4566671 Inf  4.914366  6.711723
 1        1    5.529303 0.4639790 Inf  4.690766  6.517741
 0        2    2.444541 0.2981097 Inf  1.924837  3.104564
 1        2    1.467247 0.2307103 Inf  1.078103  1.996855
 0        3    4.570218 0.4121428 Inf  3.829795  5.453790
 1        3    1.676827 0.2472920 Inf  1.255904  2.238826


# Marginal means for combined period (7 - 24 months) - Method 1 
(mod_em_inj2 <- emmeans(mod_inj, c("TX_GROUP","time")))

 TX_GROUP time    emmean         SE  df  asymp.LCL asymp.UCL
 0        1    1.7480092 0.07951497 Inf 1.59216273 1.9038557
 1        1    1.7100619 0.08391274 Inf 1.54559591 1.8745278
 0        2    0.8938574 0.12194916 Inf 0.65484147 1.1328734
 1        2    0.3833880 0.15724024 Inf 0.07520279 0.6915732
 0        3    1.5195610 0.09018011 Inf 1.34281119 1.6963107
 1        3    0.5169035 0.14747615 Inf 0.22785558 0.8059515


contr = list(`2+3|0` = c(0, 0, 1, 0, 1, 0),
             `2+3|1` = c(0, 0, 0, 1, 0, 1))
summary(contrast(mod_em_inj2, contr), type = "response")

 contrast  estimate        SE  df z.ratio p.value
 2+3|0    2.4134184 0.1541715 Inf  15.654  <.0001
 2+3|1    0.9002915 0.2198023 Inf   4.096  <.0001


# Marginal means for combined period (7 - 24 months) - Method 2
mod_emmr = regrid(mod_em_inj) 
contrast(mod_emmr, contr)

 contrast estimate        SE  df z.ratio p.value
 2+3|0    7.014759 0.5169870 Inf  13.569  <.0001
 2+3|1    3.144075 0.3448274 Inf   9.118  <.0001

7.01 和 3.14 的值是我应该得到的。抱歉,如果我在您的回复中遗漏了一些明显的内容。

于 2018-06-19T04:09:38.607 回答