我正在尝试编写一个简单的自包含程序,该程序使用 CDF 9/7 小波在一维列表上执行单级离散小波变换,然后对其进行重建。我只是使用卷积/滤波器组方法来了解它是如何工作的。换句话说,将列表与滤波器进行卷积以获得比例系数,将列表与不同的滤波器进行卷积以获得小波系数,但仅从每个其他元素开始执行此操作。然后上采样(即在元素之间添加零),将滤波器应用于小波和比例系数,将它们加在一起,并得到原始列表。
我可以让它适用于 Haar 小波滤波器,但是当我尝试使用 CDF 9/7 滤波器时,它不会产生相同的输入。然而,结果列表和原始列表的总和是相同的。
我确定这是卷积中的一个非常愚蠢的错误,但我就是想不通。我已经尝试了一堆卷积的排列,比如将过滤器集中在索引“i”上,而不是从它的左边缘开始,但似乎没有任何效果......这可能是那些会导致的错误之一当我弄清楚时,我拍了拍我的头。
这是代码:
import random
import math
length = 128
array = list()
row = list()
scaleCoefficients = list()
waveletCoefficients = list()
reconstruction = list()
def upsample(lst, index):
if (index % 2 == 0):
return 0.0
else:
return lst[index/2]
for i in range(length):
array.append(random.random())
## CDF 9/7 Wavelet (doesn't work?)
DWTAnalysisLowpass = [.026749, -.016864, -.078223, .266864, .602949, .266864, -.078223, -.016864, .026749]
for i in range(len(DWTAnalysisLowpass)):
DWTAnalysisLowpass[i] = math.sqrt(2.0) * DWTAnalysisLowpass[i]
DWTAnalysisHighpass = [0.0, .091272, -.057544, -0.591272, 1.115087, -.591272, -.057544, .091272, 0.0]
for i in range(len(DWTAnalysisHighpass)):
DWTAnalysisHighpass[i] = 1.0/math.sqrt(2.0) * DWTAnalysisHighpass[i]
DWTSynthesisLowpass = [0.0, -.091272, -.057544, 0.591272, 1.115087, .591272, -.057544, -.091272, 0.0]
for i in range(len(DWTSynthesisLowpass)):
DWTSynthesisLowpass[i] = 1.0/math.sqrt(2.0) * DWTSynthesisLowpass[i]
DWTSynthesisHighpass = [.026749, .016864, -.078223, -.266864, .602949, -.266864, -.078223, .016864, .026749]
for i in range(len(DWTSynthesisHighpass)):
DWTSynthesisHighpass[i] = math.sqrt(2.0) * DWTSynthesisHighpass[i]
## Haar Wavelet (Works)
## c = 1.0/math.sqrt(2)
## DWTAnalysisLowpass = [c,c]
## DWTAnalysisHighpass = [c, -c]
## DWTSynthesisLowpass = [c, c]
## DWTSynthesisHighpass = [-c, c]
## Do the forward transform - we only need to do it on half the elements
for i in range(0,length,2):
newVal = 0.0
## Convolve the next j elements
for j in range(len(DWTAnalysisLowpass)):
index = i + j
if(index >= length):
index = index - length
newVal = newVal + array[index]*DWTAnalysisLowpass[j]
scaleCoefficients.append(newVal)
newVal = 0.0
for j in range(len(DWTAnalysisHighpass)):
index = i + j
if(index >= length):
index = index - length
newVal = newVal + array[index]*DWTAnalysisHighpass[j]
waveletCoefficients.append(newVal)
## Do the inverse transform
for i in range(length):
newVal = 0.0
for j in range(len(DWTSynthesisHighpass)):
index = i + j
if(index >= length):
index = index - length
newVal = newVal + upsample(waveletCoefficients, index)*DWTSynthesisHighpass[j]
for j in range(len(DWTSynthesisLowpass)):
index = i + j
if(index >= length):
index = index - length
newVal = newVal + upsample(scaleCoefficients, index)*DWTSynthesisLowpass[j]
reconstruction.append(newVal)
print sum(reconstruction)
print sum(array)
print reconstruction
print array
顺便说一句,我从这里的附录中获取了过滤器值:http ://www1.cs.columbia.edu/~rso2102/AWR/Files/Overbeck2009AWR.pdf ,但我已经看到它们在一堆matlab示例代码中使用出色地。